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- m&mﬂomm{gﬁl and histony of continued Fhaetion

Continued fraetion ts o completdy dffesent opproach of looning. ot
rumbens,Jt is one of the most powesful tools of mathematies that hos @
_uﬂes]omed .opplicoiions in oun daily life.
A continued froekion is a unique matiernatical method of mpw@ﬁ'ﬁ
any seal numbes by o sum of successive division of rumbesa.
The field of appli@’ciom of continued Fraction meludes calendan
constauction, astnonomy, musie, electaie  cineuits efe. Tt is used to find

sationol oppserimotions to iwntional numbess. Sevenol compulex
0~1g0mi’c}1ms. do such appaoimotions using cortinued Faoetions. Continued
fnactions ane veny useful in solving cestoin types of equations suck
as Diopho.n{’me equation, Fells equation ete. .

The onigin of continued fraction is hend to pinpaint since examples of -
| such foctions con be found Hrmough mothematies i the last 2000 3ean
but s taue foundotion wes not losd until the lade 16005 and easly 4700,
The oign of continued fraction  can be tditionally - placed ot the
time of the creation of Euclds algosithm 1o find the goenlest commen divisos,
(4ed) of tuo rumbens} # wnckon whethen Euckid and his confernpormiag
used the alemuthm to denive continued frockions. But it close comection,
with continued froction signifies the initiol development of continued 53, e

FOJl oven o_'ﬂrw.ous&hd o yeons, ony wonk nela'led to COT'tanecJ ‘P’"Qc%lon_
WOS nestricled to Unlg spectﬁc examples The Indian man_ma}mm e,
A&yab I'_LD.%QF usec] continued fatons to solve o lineon mcle:l'ea;mmgi o

) ' RN _ g




T —
<quation (an equation haying, multiple solubions "such as ax+by=c)Howere"
he & ot genenolise his method ExamP’-efa of such fnactions courn.fbﬁiﬁ’“""Cq
i Goeek ond Anabic wsitings also. |

Two men faom the ety of Bologra.Jaly. Rafael Bombelli and Pl
Colold made contributions n the pagness. The foomen expressed 1> as o
nepealed continued fnackion, and the bften did the same fom 18"

Tn the late 16005, continued fractions became o field in its sight ﬂrmouah
the wank of John lallis. t wos Walls who fingl used the Zesm
“continued fraction” In his book Asithmatiea Infinttonium(1655), he developed
and Pmesen%ea the identily

4 = 2278015
Lond Pounechen, the finst presidert of the Royal Sociely. latea
transfonmed ﬂteja above dentity into the  form given below

A -y«

Wollis Hen toox the initiative and begcm to ].0.3 the foundotions foon som

propenties as it i xnown ]todag-:[n his, boox Opem Ma’[}lemﬁca : he
C}Ploined \mm o compule )Che nth tc:nvéaaen_’[ ch olisco some

propesties  of convengerts.
The wellknown Duich moﬂ\ernoﬁcim and. adsonomen Cllmfaan Hugaem

was ‘“‘B finst o Aemonsbnie_ o psnci:ical appllcolion of ,wniinue& ﬁacﬁm..
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His ook wos qu’rioﬂg “motivated by his desine to maxe o mechanical plantosium.

| The field of cortinued froction I:)egan Yo {lousish in the 1700 when Eulen.
[ambert and Lagoange explomed the bpie.Eulem lid down much of ks theosy
in his wosss De  Fswctionlous Continious. He showed that any sutional numbes-
con be wiillen 08 a sim]o]a continued frattion. He aleo gave e continued
froction exporsion fon the numben e and used i to show that e & an innational
numben. Lombent genesulised the wosws of Eulen on e to show that €*
and tn % ase sotional #  is swlionol.Logrange veed cortinued frochtons
b find the value of notiorol sods and paoved an imposdort theanem.

- Nineteenth centuny con probably be deseribed os the golden age of
continued fractions. It was the time in which “the subject wos knoun to eve
herrolicion As o nesult, on explosion of growth ntis field was felt. Som
of the pmnimer&'maﬂ\ema}':cians who made o significont cotoibutions 1o this
Peld (gum;'m% s Pefn':oc’l nelude. Jacobt, Bawon, Hesmmite, Goues, G’“’l‘ﬂ and
Stieldes.

From the beainn‘ma of 20th centuoy continued frockions continues o
g0 sopidly and moxe appensence n hen fields oo Kob (omless examined
the cormection between continued fraction ard choos theany. n his aeseanch.
Continued froctions have also made Thein way into enyplography  and

.,hg ben bolie geomeima. |
j‘ﬁé@_ﬂm/«ntn] developmn-}s seem 10 have taxen a lot of hn'\,es

P Lt

4__*
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once glasded, the ﬁéﬁ.onﬂmal\g)si - of continued fractions e rapidly. Eve‘n

today, the usoge of such froctions signify thol the fielld i too fom fhom
being exhausted.

T this iject wosc, we shall make an app.mac]’l to nepmesent any |

numbest i the fosm of continued fnaction and _convensely, expoess o

corﬁinued fmc,’[ion -BS “18 cmmesporaing nwnben. Lub S}nn aﬁnolgse the Key |

pmopemiies of i{.Lasﬂg. we slmn Aiscuss some opplica}ions in benef
Few basie defintions
Continued Haction

A mathemalieal expmes;ion of the foom
by

Q, +

Q t+ __L_-__a’l;a%ﬁt
s s0id To be a continied Frackion The vabies of a0, ... cnd bbby can be
eithen seal om complex. A cortinued fnoction may have a finfe en wfirile numbes

of terums I it contoins o finite numbesn of Yesms, then 15 called o fiite eortinue
%m’cien. an& 1‘f '1)( contoing  an in&’fnik numlaesn of kmm,ﬂwm e ml\ecl on

infirte conhnue& ’}”mcfhon.No}e ’drw&, mﬂle above expmeas‘mn.rf bn:b, f‘o:n_
ony M, the continued fnaction i always finde.

9'1mp1e Qorﬂ'muer.q {’mc}ion

A sim F]e cortinued fraction o corliued Foction i uhich by=1 dm olln.
s '

R
Aot rd
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;4}‘8919 An One posi}ive 'm}seaems foshon Nz, oy c,aﬁ {dxe ony) 'rrﬁeaem volue_
’mcluAin% 0 -nne num\:ems a\,oﬂ.a,,;.... ane aePemnéa o es tha] quo}ierﬂs-foﬂ
aem”ﬁﬂﬁ%omb of igﬂr\i:‘s fmch’mj—ke froction con be pu} m e‘xmplem Jfomm 7t

,[Q\ Qg,04, -+ | On og Ou* é;:é,b-\-
7[-5 A4, \5] cmc] 12.9.6 5] ane exmp]es of fimile Simple continued  Fackion:
_w\'\emeos [‘5 ) -\'] 05, ] ad 12052692, .. ) we some examples of wfinile

emn‘)le cortinued  fraction.

Cenvemaenjts
The simple cortinued fnaction [ovos. - ) wheme x ts such that 1¢x¢n. is colle
the k-th cmvem@enl of the snrnple continued fraction [0,.04.. - --s Onl on
‘[}1. 10as- - 20| The kth wmemaer& is ewolly dengted by G Fon  example,
I (=1CG=% and G=

ore the theee convesggn‘ta of the simple continued fraction
 El v i

A+
%
Now we bnove a theosem that awes O neeuaon formula o exﬂcula\te the corven

ferts of o eontinued fnoelion.
Theonem (sortinued  fnaction secunsion fosmulo): Consides o sxmple conhinued
froction Lay0u,. - 0ns ] then the numesndon P ond aemmm%gq 0, o the vth
convengerl ane defined fom oll 120 by the secunsive defirition:

RERE 0 - g e, 0,
where p =0.p=1,9_=1 ond g =0 Nete Tt in this ease @, cmn doxe any complex valug
Proof :We  shall poove the stotement bl‘] using wduction. Let the S'th]Q confinued

frocion L0104, ..y 0, . 00...] Beg'mn.%ﬁ may be finile on ifide. We finsd
cheex. Tre two base coses.

————




R)Ge,- 06

— - ¥ -— 1Po + - Pn
C= avg, =202 = %= G = % |
Both these coses agoee with the defmition.We now assume that the sladement 15

toawe fon @ positive in}%e:n w.We wort 1o show thot this statemert is towe fom e+ also.

Now CK+\ '—‘[Q\-Q-:v- coen Qe Oyp Qkﬂ]
which con be newsiften as the -fonowm mannes

CK+I = [ ¢ FYle PORPRRRE s Qs (a“"- Jé-—\;ﬂ)]

This continued  {fnockion now has ® tesms, whene the volue of ench rm is complex

and ‘33 l’\ﬂpo'mes'ls
Cyn = @t 3B * Py
(Qur f\fw) Q-1 ¥ Qya

- Oy O ‘i"D h(—l T Q + =
Oy Qe +|)qu-l t+ Qe Q-2

5 APl Px-n + Pu-l 1 Own ?x-l
T OOy qyu-q 19 * Qen Y2

- Oxas (a"- Fu—l+PK-i,>+ PK"'
T Qs (anam + qrx‘ﬂ‘) 4O

— Qg+ EI! %+ ES'!
= 0‘:*: ot G [33 oun assumpHorn]

= Peni
K+

)d'lu.":’: :[\‘le 1heoazem 19 ‘131!19 ‘E)Eh KH w}lenevem tB imu.e -fcm K. Hence b\_, ‘maudim

the theomem must hold fom all ‘m’fe&ems.
To lustrote how the {formulo. womks, we considen the J‘ollowina samPle

continued fraction 1

&

)

2 3—#—*

Then by the above thewem, we see thot

R:Q‘PO+E\ =4®+0 =3 , Ez&aﬂﬂ' Po :2-(3.) + =3 , Pa; ng-p-l;: =33+ =10,
R':oqpaﬂt; =400)+2 =¢3 ond q,= a‘qo+cL|= o+l =, %L:: 0,9, +9,= 2(H0=2,

9,709,19,= 3Q)+1="7 5 q'h-;aqqswh_:h(ﬂ"rz =30
Using these swsults, we can dblin The convergents of The continued foction. They ane
C'."LCf% , Qa-_-.i?Q and = %’:6
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Pmpen‘ries of continued fnactions

Eve:ng sakional numben can be expnessed 0s o frite  simple eontinued
Sraction Befooe giing a fmal pncof and melhod f exparision,we w0
nroduce  continued fnactions by dudying s comections with Euclid’s
algerithm which con be desesibed oo follows :

ose, T ir&eaems o and b.Now smee gttJ(a.b) = gcc](b,a} = gc&(!a\,\b\), we
may ossume that azb>0When we moke use of the division algestthm multiple
times we shall evertually neach O ginee the sequence  of smemoindens is

de&msirg ie., b>h\>..... 20.0ne con pmoceed in The foﬂowing, monnesL
Q:qlb+h' whese 0<r¢b

b= AT whese 0<R, <1y

n= OL;& +r whene o<nr<r,

Py =0 0, wheme 0<n <n
Ta=9,.,m%+0 \

The last nonzeso semainden v, is the gea(ob).Howevem. we ome mone inteested

m ﬂ'me pocess of 'ﬂ’ﬁﬁ a]ﬁos{{’(\'\m slhen ﬂum Hﬂe gza ’liselF. Evemg cl’u.ol-ien%
Qg q) ® on ety in e finfe continued faction nepnesentation . To
\Emf‘j the foct, we considen, the fo“o»fn-g exomple

guppo&e thot we wont to find the gnealest common clivisosn(gca) of 1477
ard 69. Then B‘j using Euclids o]atmﬂ%m we hove the equations

157= 6% +9

69 ="70Q) +6

9 = 16)+?
6 = 2(3)+0
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The lagt renzene smaindes i 2. Se by Euc’lideonolamitﬂ'm ged(147.69) =3

To ﬁn(? the cordinued  fraction mpmeser&olim . divide both sides of the finst

equobion by €9 1o gt 1= 2+ &4

thc}\ con be ae@nﬁ’(en tn the meci]o:nocd fosnm s follows

s ) .~ ! = 1 s +—-Lr P I ::Q+-—1—-—
— = 2+ = 2+ 1+———T— Z 1 ' 7
69 [ TS TON T RE

Thus the continued fraction sepmesentition of ‘gal = [2.7.1,2).Note thak these

one the entnies fsom the quo}ierﬁ'b fnom the a]amiﬁ-am.ﬁaam by waiting
%% =02.71.2] we do nat meon an ueual equality. but ust o melomsenhﬁon

of the sutionol numben %% by s equiva]m’c continued {mc}ion,[‘l,.'?s_i?-]”
This postieulan exam'ﬂe con be qenesolized fonr any swional numbes with
the help of the following theosem.

Theose-1: Any sutionol numben con be sepxesented 0s o frite  cmple

continued fnaction.

Proof: Let T whese ©>0, be any setional numbes. The Euelidean algosithm is
used foar findng the ged of & and b which gives us the ?onow‘m& equakions

G-:O-ob"'“a wheae 04m<b
b=0oym +1y, whene 0<r,<n

ri'-:_&a"a“’"a whesne oLr,<nr,

L T L W o N o o w]’le,ge 04 p, <1,

e

= Ot #0

171 3(‘r\& o&)ove o]aomiﬂ\m. we "Io.ve mep'laceé 9 w‘nﬂ-\ 0 to fan in line wﬁll ﬂqe

fite continued fuaction nepresentotion. Nele that since each memaindesr 1o,

1B a posﬂive 'rrﬁeaem,ﬂ'xe otuo’(ierﬁs Oy i =g NS, all poa‘w}ive also. New

ﬁ&vﬂm& the fingt eo‘,ucﬁion \05 b we aet




Similam]ﬂ fon )[\\e mnmmr\% equolions. we have
\%I =04+ 3’ MY e (‘\

L a1+._‘h =Q,+

v, )
Y‘n-t - aﬂ

A =+ —L
P)g aubdtution : -g = Q¥ Ty By T i o i‘f
Tn s sesult substitute the value of 7. 0s given obove
T = G+ —

Q,+ I
Q,+ F"_
"y

This pooeess con be mepee('}ea in the same way to get
S = gy — L
b Q,* G m A
g

Thus the continued foackion expansion  of the swtional numbes % is

&'wen bj
%—'—[qo,u‘, 5 56 .,Qn...an] whieh s finite ond sﬁm‘:ﬂe.HEnce each sotional numbe

con be expaxesseé\ 0s a Finte simﬂe contmued  fonction.
Now let us tny to think whethen the convense post of the above theosem i

tue on mot, that 15, f o finite eimple contnued fackion be given, how can we
fan& :'.,ne snhom.l numhem mepmeen}ea b5 il 7

The answen is if o continued fmaction (finite ond s%vf-ﬁe) mepmesen}alim of o numb

Y be a-,\,en,’lhe_ num\oem Y con be ea]nulnlﬁc] L}j us'm& ﬂ1e fonemrQ melnl-ionsrl-dp
Nepe oleén\j'.

[ao, a‘,O.-,_. e ’Gn—l' G_;l = [aog apaaq teeas Qn-\'\'a_“]
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To illustomte the foct, lot us ke o continued fnaction [2,2.12.) and suppose
we: “waqt -Yo-know the  swlional numben nepmesen}ed b-j this {»achon.

Note that [2,2,1,2.4] =[2.2.1,2+4]
=[2.2.).3]

r =224+ %)
=22, 4%])
22wl
’:_[:1,9\+%'\J
=[2 1]
:L'*\"’%Eﬂ
= 37)

So vow we ave neady o give a fommal pneof of the convemse post

0? ‘“‘\eomem 1.
Theonem-2 : Evemg finile simple continued fmocton nepnesents @ skiorol numbes.

Proof: Let Lag,ous.. - »anl be a given nth onden simple continued

Froction. We wish 1o show thot the ecortinued foaetion nepresents a

sational numbes. \35 using. the psﬁnﬂple of induction en the numben of
Po.sﬁ'wﬂ cLuel'lierﬁs.

A, 4\
14 n=1 then [2,,0) = o+ = 2Bk
Qo o, a sutional numbesn.

Since a, and 0 One in'l'eaemsg o,

We ossume that any finite simple cortinued fnoction with w(<n) pasttial

q,uo?:ien}a nepoesers a swbional MumbenWe mow show thal the some sesult holds
for ¥t Pamhca quetients. Lot X be the value of o eontinued fmaetion that hos
e pom”tn] quotients. “Then , we have

Y:’-ae+ 0, + = Qo+
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Whene Y 1s the continued fmaction

‘ -—
Ny gr—T1_— = La,aps-- sl

Qg4

.

\
a&-\“&k
Since [oy,09,.->0x] 38 a finile simp’le cortinued faoctions with « pamha)
Quotients , & sepmesents o antional numbes %.ﬂnis mplies thal
X=o,+ 4 = aﬁ-r-(i,;) = 0.+ X% — %p+rg

2 P
S‘tnce Og, 08 wen as pcma q ane ’tn}eaems, X must be am}iomi-_nnus, 'U'le

theosem s toue fon k1. and by mduckion, # must hold os ol iegeses.,

Now let us tum oum oftention to the discuss‘"lons of infinite SimP’].e
continued foactton.

Theosem 31 An infinite simp’le confinued fnackion nepelesenl‘s an ‘smational numbes.
Boof: We shall poove this Theomem by eontnadiction.lel x be the value of the

h\Dﬂ:rl:gn 43‘\;‘1:,‘. _Nn p__ N a r - ) - r | . o
curiiE - Eortriueq. vaction Lag, 4,04, . - .. | 1e, = [Im |La,, Q,, .- .- ,an_]_ Let
T\-700 - :

the sequence eonvesgents Ch:[aa-aha1=""'=a'ﬂ]:- %n; whene p=oay
K

Qu = NPy Y9y g- S'mce C“ﬂ NJLERN Cn > We kawe

Px‘i +Pn-—1 mc

by ] _— — ph+‘ —— E‘_ -> ..._..__——5
0<\ Cn\ < }Cn-H en‘ .Wl':l 5"“1 — q“qh-ﬂ
Rssume that == & . wheme @ andb ive s |
y ne ane Pcsmiwe m}%gmsi.ﬂq,e 0 a_b, g 0Ty
| »odls % lgg

Mun’qﬁgin@ ﬂ'mu%\nou"t b‘j Bqn ,Bieus ®<1G&n—bpn\< %—r\'\'\'ﬁ -n‘ 1 c%esen L@.@:
soﬁ‘\a& b<q"n+l ,ﬂﬂe enesu'li’ 18 04‘ Q-qm"‘bh\l(i.-rhis says ﬂh]‘ ﬁ]_es.e & a
bosilive inlegen behueen 0 and 1, which is contmodiction. The e fon

be an tnmoliono) numbes.

e, % must

‘1{ 19 'mbmol to a9k w}uzihea: the eonvenge of 'ﬂrﬁs ﬁneomem hous en nat

1 2 po%iblﬂ o expaess any immalional numbes gs an ‘mftnte  contmued ooekion 7

]n the next theomem, We aae geing b Aiscuss this
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Theosern-4: 1 10 75 an imolional numben, then t has an mfirile 5‘imP1é—

continued {naction nepresentotion.
Frof : Let the simple continued Jnaction exponsion of the wswkional w be

Pintte. Thus the cortinued fmation sepmesenting w hos n tesms , wheoe mis a
bositive infegea. But we have pmovea eonlien Thal o conbinued FPraction with a
finle numbea of tesms must be o sotiondl numbes. Hence the continued
fracion  containing n teams s eqy'wa]erﬂ‘ to o sotiool , and thus, il con neven

be Qq}ﬁ\ftﬂen} o w. Thesefone if w be an mational , & eamnot have o= @afinste

continued fnaction mepmesenhﬁon. on ‘m dhen wonds it must have on nfinite

Sim}ﬂe eonbinued  Fraction mepezesen}afion.
Lot us viow think of the method of expaessing given any ssmational numben

@ as a cortiued fmaction. To do this, we moy use the -f’onowing necunsive

fornula

0= [q'l]
A

—

Rin = "o - 04
whene o=a and the dunekon [x] dencles the gneotes} integen function.
considen the inmational numbess U5 . We leb o= 415. Then os

Fon example,

o< i <4 , a&=[ﬁl:3

Tt SR = M
ay=gey = TgE =TT AT
e B - geesc 6+WB-Y S as=
a, = A — M =. X
4~ Js-2 6 %

Stnee  ay= a4 ,it is clean thal we will be&‘m to mepeat o= and so on,
U this proeess, we con find oll e a; ond J1% =[2:16 ] whene the bag

oven dand 6 indicates ’ﬁml Uneg 09e me,pe.a{ed oven aru; ovesn.
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prlicb._jcbns of continued fsactions

We have alnendy dicussed about the way of finding the conttnued fxaction
nepnesenbtion of any sieol numben , ond viee-vessa Maneoven, continued fumetion
ome an wmpostart 100l fom solving psoblems selated vith morments invalving
Yo diffesent pemioas.’l-kﬁ, t\j pe of sttuotions occun both n ’[heoaeiicol
question of numben theony. eomp]ex anolysis, dynomical systems ... as well
0s in mone Pmc}ical qpeslions of cons}nue}irﬁ. colendan, ’tun'rn& B
instouments, geass ... .In this section, we shall discussic obout some of these
applieations

Consbwc}m@ a colendan: Continued fwoctions con be apn:ea in designing
colendon. Tn a yeon. these ame 265 days Howevesn. astoonomess tell thot the
easih completes #s ombit omound the sun n approximotely 365- 2422 doye.
The con’(inuecl froction of This numbesn is

365.2422 =[265.4,7.1.3,4.1.1.1,.2]

Yop = L
The seconc] eonve:naen} is [?:65,'1] =365 =365+ 4

whc}\ meons Q mlenc}om with 265 &ug!* pen yeon but a leap yeamn m eveay

H yeass. Jf the fousth C:onvesﬂen} is used,then o belten appe\oxzminon is found
[265.4,7,]=2652424.... = 365 + 45,

The Guegosion colendan, named af'len Pope Goegemio XIII who intsoduced & =,
1852 .is bosed on acgcle of HOOQ 3e_omiﬁmene is one ]ea.]: yeom eveny yean
which s o multiple of 4 bul not of 100. unless it ia o mulliple of 400 Insthen

wam:ls, in HOO yeons 3 leo.p yeans ome omiﬂ'ec) , ﬂ'nus ﬂnfme ane

400- %65 +100-3 = 146097
1L ——..
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dOtBS.On ﬂaeu.o?hem hand.in 400 yeans 1f ﬂne numbe:n GF clw_.}s ane counl'ed Wﬂ}l

an yeom of 385‘*%@, daﬁs.’d\en thene ane
1400 (365 +35) = 146096.9696. .. - douys n 400 yeoss.

IWhich is an exce"en} appmximaﬂ'ion! .
Solvin& linean Dioplnon{ine equations :’Diopkmhne equalien is named aften
LDiQPLQn)(U_._B of Alexandsea ; a Greex mathemalician ?ive& amouna 250 FID and

wrete o book nomed Anithmahen dbout these equotions.

Diophontine equotion s on algebnsic equakion in one oo mane thon one
vasiables with begral coefficients such thal orly  integrol. solutions ame sought
This type of equakions mowy hove ro solution, unique solution on on infinite
umbes of solutions. A Diophantine equation i seid o be lineasm n two
vasiobles % and y if & hos the fonm axtby=c.wheme ab md e age
irfegens. Some examples of linean Diophantine equakions (LDE) om 2x9y=6..
2+ Ty = 9, Ax-24=12 ete. \

Suppose we vt 1o sohe the LDE  AwsBy=C.whene A,B and C ane
m}EQm:l cefficients.

The LDE. 15 s0id 1o be solvable ff aed (AR divides C.If o, divide both
sides of The aiven LDE by ged (#8) to meduce it fo the fonouma {osm
oxtby=C. ab.c one ilegems and ged(eb)=1.

The finst step m sobving the LDE s o find a pasticulan SOlL:}ion Gt

of the LDE oxtboy =4 ‘ueing Yhe aimp\e continued fswnckion -

% Lo o]
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From axerbyo=1 we have alerd+b(eyd =
Thus Cexgeud 16 o postieslan soltion of the LDE ox+by=c
Finally any  sobution of this equation is a sebition of the osiginal gen
equation AtBy = C as well.

Fells. equation: Let d be a positive integen which 1 not o peafect squase
Then the Diophontine equiion 2 ~dy =4 is xnown as Pells_equation.This
type of equation was finst gtudied n Tndia elooding with B hmagupto.,
whose found an inkegen sbition to 20 +1= 42

The Pelly equation con be sewsilten g (-Jdy)(+4Ty)=1 . hence fom
4>0, we have thot 16 o sukonal appmoximation of Jd. This 1s the sweason
Fon using continued fraction expongion of 1d n sobing Telle equakion.

1t 6 oplle tdesesting thal fon melotively small values of . the solation
con be vesyy lange. Fon example Fesmol agved his friend William Boouncxes
o find o soldion fon 3=109,sa51n% that he eJ:xose o snall volie &f d
to maxe the pocblem not too diffieul}. Howeves, the smallest solution woe

Jound To be %=15%0706719%6249 , 4=151404 204 55 100

. 201 + 257109 \b
which s also given by K————’——> =158070671986249 + 1540424155100 T6E

<
Con}inuea fraction  fon J2 ¢ The squane noot of 2 golisfies the ﬁllowirg
J2 = A+ :]!T‘
while {2 = 1% rE- gy 1
= ik .

L En
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“This step 6 mepea]ec? ogoin and agoin . Henee the conlinued faction
expongion of 2 is given by 2 =142.3.) v = T43)

Fibonacci Sequence and Gowen satio =T|ne ﬁbomcci seguence  wos
tino dueed ,bﬂ L eorosdo Pisano, also «nown as Fibonacei . Mets defined

bg Fo =®,E=1,R‘1=E_, +Fp.a fon all irﬁeaeme, nz% The fingt few
Fioonacer numbens aned1.1,2,3.5.%,13,21 ... .

The unique posihve numbesns ¢ ealisfging P= |+é—>— w0 given by
el

oma 1t 18 xnown os ’ﬂwe Go]c]en ’Ra}iO.H mAaKes arpeo.menc,es m

many diffeserd  corterts, from Mathematies to Ao,

Fsiom the abeve selotion &t is elean thot continued faction of @ is.
=010, ) =17]) |

This 15 the ss'xmples} finile cortinued fraction. Note that the eonvengents

of & ane l:)mee-fsela"the sukios of conseentive Fibonacei numbess te.,
015 0il=2 =% cdsom Sotat g=lm 2
Conbinued froction fon e ond ™ Leonand Eulen pooved that the

I

ny+o [,

co*rﬁinuea froedion ae pneseﬂlina. e,18 a’wen b Yy /

e =[2,1,2, 1.0 4,048, - - - - 1 =[2, 5 amd Yoy
This sesult tmplies that e is neithen sdional non a. guodnalic immabional.
Ackually, Eulen showed the mome genesol mesult that fom any integen
azt, it holds , )

ex =[1,0-1,1,%a-104 Sa-11..... ]

Y
— @,@m-ﬂ)a—-j_, jjm't.\ o
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dohon Heisich Lambest booved that fon any sutional Vo, tan(v) is
ssotional. Hence 7t is inationol since tan(h) =1 The eonkinued foaction
Lof T is given bj m=03,7,151,292,110,2.0 344,23, ... | which is mome
mygtesious Than the one of et is dill a pooblem to undenstond i the
postial quatients of the cortinued fraction of 7t is bounded on not.
Quadswtic numbess: Joseph Louis /.aamn@e proved thal the continued fnactior
expansion of o sweol numben x i u]hma}el_g pesiodie. ie.

2 T ROUOR- W WSRO N O .
ff « 15 o quodsatic numben, that i % is asodt of o quadsubic polynomial
with nalional coefficients.

Tn such cases. we vee the shostes malation

=] i e+ 3 N
Conlinved fnoetions fon aralytic funchions: Seme analybie funtions aleo have o
kind of continued foaction exponsion. Fon emm’:le, the iangen’c '-

'ta'n('?‘-.) o | = e x’—l""
B B
5- 2

= ,

The shdy of cqjﬂiwea frackions of onolytie unclions is shictly emmneelsd
to the theowy of Pade Oppasimations, which ame sbional fimction
,_ap';moxima}ions of amﬂg’dc functions .

Ceenenolisations of cortinued fnoctions .\n hi.a}nen dimensions

Gimulbreous  sational appaeximations of neal numbens is o much mose

_difgicunt 1'06\« to c]o mﬁ\em ﬂmn !mkoml appmxima}:fon of Qa sirq&le nwnbeﬁ.

e ——— —
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1n fock, the conlinued fraction expansion hos so many spesitic foolunes that "°
extension of i in l'uahea dimension with same prepestties hos been pmes'tb‘le-

Howeven , o few cﬂ}emp}s wesne mode, pm’mc_ulaml_q the Jacobi- Peamon
&laomﬂm wses o wind of tesmesy continued Huckion expansion to deol
with cubie wmationality. This bpic i elosely nelated with the aeom?ayj of
rumbesns, stoted by Heamann Minkows ki, whieh i the study of eonvex bedies
ond infegen veetoms m the n-dimensionol Euelideon spoee R”

Recertly, Wollgng Schmidt, Leonhand Summenen ond Darien Rey mode

Biéniflhan} fmoam%s in the so clled ?amme'b:ic 390"16}9‘3 of numbess.

Coneluding  Remoxs

From the econbinued fowction exponsion 01aomi’d1m we come o know that we
con sepmesent any nationa] rumbes. by a finile simp‘.le continued froetion
and any tnationa] numben by an nfinite sirqple contirued  Praction. The
comvemse coses ame 0lso lne Jon both stuotions. The. bogie prepesties
ond applieations of eontinued froctions anc also sludied. And of cousse,

ot the end of this wonk .we anec] a lot of lmomleage obout continued

fen_c_xe}iom, o field of mathemolies that seems o have been iammc} befone
the projel womk. . |
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Re.‘rememes

3 On conlinued fmachons ond ids aPF]ica}ions. Rare. Bassam Badasi.
VA sluﬂg m aPplimiions of continued fruclions, Kamen Lynn Pasmish
5 Continued factions *labnoduction and appli cations , Miehel Woldsehmat,

Coslo Sorma. /
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INTRODUCTION :

Certain groups and subgroups of groups have particularly nice structures. A locally cyclic
group is a group in which each finitely generated subgroup is cyclic. Cyclic group is invented by Carl
Friedrich Gauss, who considered the structure of multiplicative groups of residues mod n and
established many properties of cyclic and more general abelian groups that arise in this way.

A cyclic group is a group which is equal to one of its cyclic subgroups: G = (g)

for some element g, called a generator of G. For a finite cyclic group G of
order n we have G ={e, g, g3 ..., g '}, where e is the identity element and g' =
g whenever i = j (mod n); in particulargn=g°=e,and g = g"".

GRoup: A group consists of a set and a binary operation on that set that fulfills
certain conditions. Groups are an example of example of algebraic structures,
that all consist of one or more sets and operations on theses sets.

In mathematics, the order of a finite group is the number of its elements. If a
group is not finite, one says that its order is infinite.




The order of an element in a group is the smallest positive power of the
element which gives you the identity element.

EXAMPLE:

Show that the set of all integers ...-4, -3,-2,-1,0, 1,2, 3, 4, ... is an infinite Abelian group with respect
to the operation of addition of integers.

Solution:
Let us test all the group axioms for an Abelian group.

(G1) Closure Axiom: We know that the sum of any two integers is also an integer, i.e., for

alla,b€EZ, a+b€EZ. Thus Z is closed with respect to addition.
(G2) Associative Axiom: Since the addition of integers is associative, the associative axiom is satisfied,

i.e., for a,b,cEZE such that a+(b+c)=(a+b)+c

(G3) Existence of Identity: We know that 00 is the additive identity and 0EZ0€@,

i.e., 0+ta=a=0+a VaeZo+

Hence, additive identity exists.

(G4) Existence of Inverse: If aEZ€, then —a€EZ—€. Also, (—a)+a=0=a+(—a)(-)

Thus, every integer possesses additive inverse. Therefore Z is a group with respect to addition.
Since the addition of integers is a commutative operation, therefore a+b=b+a Va,bEZ
Hence (Z,%)(,+) is an Abelian group. Also, Z contains an infinite number of elements.
Therefore (Z,+)(,+) is an Abelian group of infinite order.

SUBGROUP: Let (G, *) be a group and H be a non-empty subset of G, such that (H, *) is a
group then, “H” is called a subgroup of G.

That means H also forms a group under a binary operation, i.e., (H, ) is a group.

Also, any subset of a group G is called a complex of G.

ORDER OF SUBGROUP: In general, the order of any subgroup of G divides
the order of G. More precisely: if H is a subgroup of G, then ord(G) / ord(H) =




[G : H], where [G : H] is the index of H in G, an integer. This is Lagrange's
theorem. If a has infinite order, then all powers of a have infinite order as well.

ORDER OF ELEMENTS OF SUBGROUP: The order of an element of a group
(also called period length or period) is the order of the subgroup generated by
the element.

EXAMPLE:consider the set of nonzero real numbers, R+, €+, with the group
operation of multiplication. The identity of this group is 11 and the inverse of any
element acR-@ €@+ is just 1/a.1/€. We will show that

Q+={p/q:pandqare nonzero integers}and are nonzero integers}
is a subgroup of Rx.x.
Solution

The identity of R+« is 1;1; however, 1=1/11=1/1 is the quotient of two nonzero
integers. Hence, the identity of R+« is in Q«.x. Given two elements

in Q«,*, say p/qand r/s, , their product pr/gs is also in Q+.The inverse of any
element p/qeQ-+is again in Qssince (p/q)-1=q/p1=. Since multiplication in R+x is
associative, multiplication in Q«x is associative.

Definition of cyclic group: Cyclic groups are groups in which every element is a power of some fixed
element. (If the group is abelian and I’'m using + as the operation, then | should say instead that every
element is a multiple of some fixed element.) Here are the relevant definitions. Definition. Let G be a
group, g € G. The order of g is the smallest positive integer n such that g n = 1. If there is no positive
integer n such that g n = 1, then g has infinite order. In the case of an abelian group with + as the
operation and 0 as the identity, the order of g is the smallest positive integer n such that ng = 0.
Definition. If G is a group and g € G, then the subgroup generated by gis hgi={gn | n € Z}. If the group
is abelian and I’'m using + as the operation, then hgi = {ng | n € Z}. Definition. A group G is cyclic if G = hgi
for some g € G. g is a generator of hgi. If a generator g has order n, G = hgi is cyclic of order n. If a
generator g has infinite order, G = h is infinite cyclic.

Example. (The integers and the integers mod n are cyclic) Show that Z and Zn for n > 0 are cyclic. Zis an
infinite cyclic group, because every element is a multiple of 1 (or of -1). For instance, 117 = 117-1.
(Remember that “117 - 1” is really shorthand for 1 + 1 + - - - + 1 — 1 added to itself 117 times.) In fact, it
is the only infinite cyclic group up to isomorphism. Notice that a cyclic group can have more than one
generator. If nis a positive integer, Zn is a cyclic group of order n generated by 1. For example, 1
generates Z7, since

+1=21+1+1=31+1+1+1=41+1+1+1+1=51+1+1+1+1+1=61+1+1+1+1+1+1=
0

In other words, if you add 1 to itself repeatedly, you eventually cycle back to 0.




Order of cyclic group: let (G, o) be a cyclic group generated by a. The order of group G is
equal to the order of the element a in G. In other words, |€|=|€|, where |€| denotes the
order of the element g. Depending upon whether the group G is finite or infinite, we say G to
be a finite cyclic group or an infinite cyclic group.

In the above example, (Z,, +) is a finite cyclic group of order 4, and the group (Z, +) is an
infinite cyclic group.

Order of elements of cyclic group: IN a cyclic group of infinite order, identity has order
1 and all other elements have order . In a cyclic group of order , order of is n
ged (n, k) . Furthermore, the (distinct) elements which have orderare {adi:
ieZndx}.

EXAMPLE.

A cyclic group is a group that is generated by a single element. Some examples of cyclic groups include:
The group of integers modulo n, denoted Z/nZ, where n is a positive integer. This group is the set of
integers {0, 1, 2, ..., n-1} with the operation of addition modulo n.

The group of units modulo n, denoted (Z/nZ)*, which is the set of integers {1, 2, ..., n-1} that are relatively
prime to n.

The group of complex roots of unity, denoted Cn, where n is a positive integer. This group is the set of
complex numbers of the form cos(2mk/n) + isin(2mk/n), where k is an integer between 0 and n-1.

The group of permutations of a finite set, denoted S_n, where n is a positive integer. This group is the set
of bijections from a set of n elements to itself, with the operation of composition of functions.

SOME PROPERTIES AND INTERESTING THEORM ,CONSULTINGCYCLIC
GROUPS:

PROPERTIES:

If a cyclic group is generated by a, then it is also generated by a-.

Every cyclic group is abelian (commutative).

If a cyclic group is generated by a, then both the orders of G and a are the same.
Let G be a finite group of order n. If G is cyclic then there exists an element b in G
such that the order of b is n.

Let G be a finite cyclic group of order n and G=<a>. Then G=<ar> if and only if r<n
and ged(r, n)=1. Thus the number of generators of a finite cyclic group of order n is
®(n), where @ is the Euler-Phi function.

Every subgroup of a cyclic group is also cyclic.

A cyclic group of prime order has no proper non-trivial subgroup.

Let G be a cyclic group of order n. Then G has one and only one subgroup of order d
for every positive divisor d of n.




= If an infinite cyclic group G is generated by a, then a and a- are the only generators of
G.

THEORMS:

1: Theorem

Let g be an element of a group G and write hgi = {g k : k € Z}. Then hgi is a subgroup of G
Proof. Since 1=g0, 1 € hgi. Suppose a, b € hgi. Thena=gk,b=gmandab =gk gm=gk+m. Hence
ab € hgi (note that k + m € Z). Moreover,a-1=(gk)-1=g-kand -k € Z, so that a -1 € hgi. Thus, , we

have checked the three conditions necessary for hgi to be a subgroup of G.

DEFINITION 2. If g € G, then the subgroup hgi ={g k : k € Z} is called the cyclic subgroup of G generated
by g, If G = hgi, then we say that G is a cyclic group and that g is a generator OF G.

EXAMPLES. (1) If G is any group then {1} = hli is a cyclic subgroup of G. (2) The group G =

{1, -1, 1, —1} € C* (the group operation is multiplication of complex numbers) is cyclic with
generator 1. In fact hii={i0 =1, 1l =1, i2 =—1, 13 = —1} = G. Note that —i is also a generator for
G since h—ii= {(-1) 0 =1,(-1) 1 =—1,(—1) 2 =—1,(-1) 3 =1} = G. Thus a cyclic group may have
more than one generator. However, not all elements of G need be generators. For example h—1i =
{1, =1} 6= G so —1 is not a generator of G. (3) The group G = Z * 7 = the group of units of the
ring Z7 is a cyclic group with generator 3. Indeed, h3i= {1=30,3=31,2=32,6=33,4=34
,5=35}=G

Note that 5 is also a generator of G, but that h2i = {1, 2, 4} 6= G so that 2 is not a generator of G. (4) G =
hri = {r k : k € Z} is a cyclic subgroup of R* . (5) The group G = Z * 8 is not cyclic. Indeed, since Z * 8 = {1,
3,5, 7}and hli={1}, h3i={1, 3}, h5i={1, 5}, h7i = {1, 7}, it follows that Z * 8 6= hai foranya €Z * 8.

If a group G is written additively, then the identity element is denoted O, the inverse of a € G is denoted
-a, and the powers of a become na in additive notation. Thus, with this notation, the cyclic subgroup of
G generated by a is hai = {na : n € Z}, consisting of all the multiples of a. Among groups that are normally
written additively, the following are two examples of cyclic groups.

(6) The integers Z are a cyclic group. Indeed, Z = hlisince each integer k = k - 1 is a multiple of 1, so k €
hliand hli=Z. Also, Z = h-1i because k = (-k) - (-1) for each k € Z. (7) Zn is a cyclic group under addition
with generator 1.




2.THEORMS: Let g be an element of a group G. Then there are two possibilites for the cyclic subgroup of
G.

Case 1: The cyclic subgroup hgi is finite. In this case, there exists a smallest positive integer n such that g
n=1and we have (a)gk=1ifandonlyif n|k. (b)gk=gmifandonlyifk=m (modn). (c) hgi={1, g, g2
,...,8n-1}and theelements 1, g, g2, ...,gn-1are distinct. Case 2: The cyclic subgroup hgi is infinite.
Then(d)gk=1ifandonlyifk=0.(e)gk=gmifandonlyifk=m. (f) hgi={...,g-3,g8-2,g-1,1,g,82
,83,...}and all of these powers of g are distinct.

Proof. Case 1. Since hgi is finite, the powers g,g2,g 3, ... are not all distinct, so let g k =g m with k <
m. Then g m—k =1 where m — k > 0. Hence there is a positive integer | with g | = 1.

Hence there is a smallest such positive integer. We let n be this smallest positive integer, i.e., nis the
smallest positive integer such that g n = 1.

If n|k then k=gn for someqg€n.Thengk=gqn=(gn)g=1q= 1. Conversely, if gk =1, use the
division algorithm to write k=gn+rwithO<r<n.Thengr=gk(gn)-g=1(1)-q = 1. Since r < n, this
contradicts the minimality of n unless r = 0. Hence r = 0 and k = gn so that n| k.

(b) g k=g mifand only if g k-m = 1. Now apply Part (a).

(c) Clearly, {1,g,82,...,gn-1} C hgi. To prove the other inclusion, let a € hgi. Then a =g k for some k €
Z. As in Part (a), use the division algorithm to write k = gn+r, where 0 < r < n-1.Then,

a=gk=gagn+r=(gn)qgr=1qgr=gre{l, g g2,...,gn-1}
which shows that hgi € {1, g, g2, ..., gn-1}, and hence that
hgi={1,g,82,...,8n-1}

Finally, suppose that gk=gmwhere0<k<m<n-1. Thengm-k=1and 0 <m -k <n. This implies
that m — k = 0 because n is the smallest positive power of g which equals 1. Hence all of the elements 1,
g, 82,...,gn-1are distinct.

Case 2. (d) Certainly,gk=1ifk=0.1fgk=1,k6=0,theng-k=(gk)-1=1-1=1, also. Hencegn=1
for some n > 0, which implies that hgi is finite by the proof of Part (c), contrary to our hypothesis in Case
2. Thus gk =1implies thatk=0

(e) g k=gmifandonlyif gk-m = 1. Now apply Part (d).

(f) hgi = {g k : k € Z} by definition of hgi, so all that remains is to check that these powers are distinct. But

this is the content of Part (e).

Recall that if g is an element of a group G, then the order of g is the smallest postive integer n such that
gn=1,anditis denoted |g| = n. If there is no such positive integer, then we say that g has infinte order,
denoted |g| = e. By Theorem 3, the concept of order of an element g and order of the cyclic subgroup
generated by g are the same.




COROLLARY 4. If g is an element of a group G, then |g| = | hgi].

Proof. This is immediate from Theorem 3, Part (c). If G is a cyclic group of order n, then it is easy to
compute the order of all elements of G. This is the content of the following result.

THEOREM 3. Let G = hgi be a cyclic group of order n, and let 0 <k < n-1. If m = gcd(k, n), then [gk | =n
m.

Proof. Let k = ms and n=mt. Then (gk ) n/m =gkn/m =g msn/m=(gn) s =1s = 1. Hence n/m divides | g
k | by Theorem 3 Part (a). Now suppose that (gk ) r = 1. Then g kr =1, so by Theorem 3 Part (a) n|kr.
Hencenm | wk m 9 r and since n/m and k/m are relatively prime, it follows that n/m divides r. Hence

n/m is the smallest power of g k which equals 1, so |g k | =n/m.

THEORM 4: . Let G = hgi be a cyclic group where |g| =n. Then G = hg ki if and only if gcd(k, n) = 1.

Proof. By Theorem 5, if m = gcd(k, n), then |[gk | =n/m. ButG=hgkiifandonlyif [gk | = |G| =n and
this happens if and only if m = 1, i.e., if and only if gcd(k, n) = 1.

EXAMPLE If G = hgi is a cyclic group of order 12, then the generators of G are the powers g k where
ged(k, 12) = 1, thatisg, g5, g 7, and g 11. In the particular case of the additive cyclic group Z12, the
generators are the integers 1, 5, 7, 11 (mod 12).

Now we ask what the subgroups of a cyclic group look like. The question is completely answered by
Theorem 8. Theorem 7 is a preliminary, but important, result.

THEORM 5: Every subgroup of a cyclic group is cyclic.

Proof. Suppose that G = hgi = {g k : k € Z}is a cyclic group and let H be a subgroup of G. IfH = {1}, then H
is cyclic, so we assume that H 6= {1}, and let g k € H with g k 6= 1. Then, since H is a subgroup, g -k = (g k
) -1 € H. Therefore, since k or -k is positive, H contains a positive power of g, not equal to 1. So let m be
the smallest positive integer such that g m € H. Then, certainly all powers of g m are also in H, so we
have hg mi € H. We claim that this inclusion is an equality. To see this, let g k be any element of H (recall
that all elements of G, and hence H, are powers of g since G is cyclic). By the division algorithm, we may
write k=gm+rwhere0<r<m.Butgk=ggm+r=ggmgr=(gm)qgrsothat

gr=(gm)-qgk €EH.

Since m is the smallest positive integer with g m € H and 0 <r < m, it follows that we must have r = 0.
Then g k =(g m) g € hg mi. Hence we have shown that H € hg mi and hence H = hg mi. That is H is cyclic
with generator g m where m is the smallest postive integer for whichgm € H

THEORM 6: (Fundamental Theorem of Finite Cyclic Groups) Let G = hgi be a cyclic group of order n.

(a) IfHis any subgroup of G, then H=hgdifor somed|n.
(b) ) If His any subgroup of G with |H| =k, then k|n.
(c) Ifk|n, then hg n/kiis the unique subgroup of G of order k.




Proof. (a) By Theorem 5, H is a cyclic group and since |G| = n < oo, it follows that H = hg mi
where m > 0. Let d = gcd(m, n). Since d|n it is sufficient to show that H=hg d i. But d|m also, so
m=qd. Thengm=(gd)gsogm € hgdi. Hence H=hgmi € hgdi. Butd =rm +sn, wherer, s
EZ,

gd=grm+sn=grmgsn=(gm)r(gn)s=(gm)r(l)s=(gm)rehgmi=H

This shows that hg di € H and hence hgdi=H

(b) By Part (a), H=hg d i whered|n. Thenk=|H| =n/dsok]|n

(c) Suppose that K is any subgroup of G of order k. By Part (a), let K = hg mi where m|n. Then

Theorem 5 gives k = |K| = |g m| = n/m. Hence m = n/k, so K = hg n/ki. This proves (c).

Note that hg mi € hg ki if and only if k| m. Hence the lattice diagram of G is:
G%-hg2ihg3i%-%hg4dihg6i-% hli

APPLICATION: Number Theory. Cyclic groups are found in nature, patterns, and other fields of
mathematics. A common application of a cyclic group is in number theory. The division
algorithm is a fundamental tool for the study of cyclic groups.

Division algorithm for integers: if m is a positive integer and n is any integer, then there exist
unique integers g and r such that

n=mg+rand0<r<m.

Find the quotient g and remainder r when 45 is divided by 7 according to the division algorithm.
The positive multiples of 7 are 7, 14, 21, 28, 35,42,49 - - -

45=42+3=7(6)+3

The quotient is q = 6 and the remainderisr = 3.

You can use the division algorithm to show that a subgroup H of a cyclic group G is also cyclic

2. A subgroup of a cyclic group is cyclic.

Proof. Let G be a cyclic group generated by a and let H be a subgroup of G. IfH=¢, then H=<e >
is cyclic. fH6=¢e,thenan €Hforsomen€Z+.Letm

We must show that every b € H is a power of c. Since b € Hand H< G, we have b = a n for some
n. Find a g and r such that

n=mq+rand0<r<m.then,

an=amqg+r=(am)gar,so

ar=(am)-gar.

Sincean € H,am € Hand H is a group, both (a m) —-q and a n are in H. Thus (a m) -gn € H, then
ar € H. Since m was the smallest positive integer such thata m € H and 0 < r < m, we must have
thatr=0. Thus n=gm and

b=an=(am)g=cq, Sobisapowerofc

Cyclic Groups in Bell Ringing. Method ringing, known as scientific ringing, is the practice of
ringing the series of bells as a series of permutations. A permutationf:1,2,...,n>1,2,...,




n, where the domain numbers represent positions and the range numbers represent bells. f(1)
would ring the bell first and bell f(n) last [6]. The number of bells n has n! possible changes [4].

The bell ringer cannot choose to ring permutations in any order because some of the bells
continue to ring up to 2 seconds. Therefore no bell must be rung twice in a row. These
permutations can all be played until it eventually returns to the original pattern of bells.

A common permutation pattern for four bells is the Plain Bob Minimus permutation (Figure 8).
The Plain Bob pattern switches the first two bells then the second set of bells. They would start
the bell ringing with 1234. The first bell would go to the second position and third would go to
the fourth; therefore the next bell combination would be 2143. The next bell switch would be
the two middle bells. Therefore the bell 2143 would turn to 2413. The bell ringers would repeat
this pattern of switching the first two and second two, followed by switching the middle until
about 1/3 of the way through the permutations. At the pattern 1324, we cannot switch the
middle two. If we switched the middle two, we would get back to 1234. Therefore, the bell
ringers figured out to switch the last two bells every 8 combinations. Then after 24 moves (4!)
we get back to the bell combination of 1234. Since we made rotations of the bells and
generated every combination of the set and are now back at the beginning, we can say that the
bell ringing pattern is cyclic.

4 bells

1234 2314 3124
1243 2341 3142
1423 2431 3412
4123 4231 4312
4213 4321 4132
2413 3421 1432
2143 3241 1342
2134 3214 1324

(1234)

Clock Arithmetic. On a clock the numbers cycle from one to twelve. After circulating around the
clock we do not go to 13 but restart at one. If it was 6 o’clock, what would it be in 9 hour.
There are other ways to cover all of the permutations without using the Bob Minimus
method(Figure 9). Bob Minimus method is used because it is easy for bell ringers to accomplish

because they do not have sheet music. Another common permutation method is following the

last bell and moving it over one space to the left each ring then after it is on the left moving it
back over to the right.




You can create a cyclic group with any number of bells. However, the more bells you add the
longer the cycle will take. Assuming that each bell ring takes 2 seconds, someone can complete
a set of three bells in 12 seconds. If we have 9 bells it could take up to 8 days and 10 hours [4].
The bell permutations can be expressed as a Hamiltonian graph. A Hamiltonian path is a
undirected or directed graph that visits each vertex exactly once [6]. The Hamiltonian circuit can
be drawn as a simple circuit that has a circular path back to the original vertex. Hamiltonian
circuits for the symmetric group Sn mod cyclic groups Zn correspond to the change ringing
principles on n bells.

Clock Arithmetic. On a clock the numbers cycle from one to twelve. After circulating around the
clock we do not go to 13 but restart at one. If it was 6 o’clock, what would it be in 9 hours? 6am
+ 9 =3pm. The set of the numbersonaclockareC=0,1,2,3,4,5,6,7,8,9, 10, 11. This set of
numbers is a group. The identity element is 0 what we will think of as 12. If we add 12 hours to
anywhere on the clock we will end up in the same position.

REMARK OR CONCLUTION: The demonstration of the characteristics of cyclic group theory and
its application shows the importance of cyclic group theory across multiple fields: its

prominence within number theory in mathematics, uses within cryptography and possible
applications across many other disciplines. Cyclic groups’ distinctive nature of having one
generative function allows them to play a pivotal role in observation, extrapolation, and
implementation. By being generated by only one function and its respective operation, cyclic
groups have the unique characteristic that they are inherently Abelian since any member of the
group must be a power of the generative function. Therefore, the binary operation must be
commutative under any circumstance. As such, this forces all simple cyclic groups to have the
unique characteristic that they must have a prime cardinality.

Human minds are designed for pattern recognition and we can find algebraic structures in
common objects and things around us. Cyclic groups are the simplest groups that have an object
that can generate the whole set. The object can generate the set by addition, multiplication, or
rotations. Cyclic groups are not only common in pure mathematics, but also in patterns, shapes,
music, and chaos. Cyclic groups are an imperative part of number theory used with the Chinese
remainder theorem and Fermats theorem. Knowing if a group is cyclic could help determine if
there can be a way to write a group as a simple circuit. This circuit could simplify the process of




generation to discover the most efficient way to generate the object for use of future
applications in mathematics and elsewhere.
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INTRODUCTION

Cryptography is the science of using mathematics to encrypt
and decrypt data. Cryptography comes From Greek word
“crypto” Means hiding and “graphy” Means writing.
Cryptography literally means writing something secretly.

* Cryptography enables you to store sensitive information or
transmit it across insecure networks (like the Internet) so that

it cannot be read by anyone except the intended recipient.

While cryptography is the science of securing data,
cryptanalysis is the science of Analyzing and breaking secure
communication. Classical cryptanalysis involves an

Interesting combination of analytical reasoning, application
of mathematical Tools, pattern finding, patience,
determination, and luck. Cryptanalysts are also Called
attackers. Cryptology embraces both cryptography and
cryptanalysis.

Computer data often travels from one computer to another,
leaving the safety of its protected physical surroundings.
Once the data is out of hand, people with bad intention coulc
modify or forge your data, either for amusement or for their
own benefit.

Cryptography can reformat and transform our data, making
it safer on its trip between Computers. The technology is
based on the essentials of secret codes, augmented by moderr
mathematics that protects our data in powerful ways.

Computer Security — generic name for the collection of tools

designed to protect data and to thwart hackers.
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Network Security — measures to protect data during their
transmission.

Internet Security — measures to protect data during their
transmission over a collection of interconnected networks.

HISTORY OF CRYPTOGRAPHY

It all started around 2000 B.C. where Egyptians used
to communicate important information through
Egyptian hieroglyphs. Those hieroglyphs are a
collection of pictograms with intricate designs and
symbols that could be deciphered by only a
knowledgeable few. These earliest uses of
cryptography were found engraved on some stone.

Then, the trails of cryptography were found
in one of the most popular eras of history, the Roman
civilization. Julius Caesar. the great emperor of
Rome, used a cipher where he used to shift every
alphabet thrice to the left. Hence, D will be written in
place of A and B will be substituted with an E. This
cipher was used for confidential communication
across Roman Generals and the emperor was named
Caesar cipher after Julius Caesar.




The following figure Shows this process:-

Caesar Shift Cipher

[alejcofefF]

PLAINTEXT : internet society ghana chapter

CYPHERTEXT : lqwhughw wilhwb jkdqd fkdswhu

The Spartan military was known to have
recognition for some old ciphers. They were also the ones to

introduce steganography, hiding the existence of messages
for absolute secrecy and privacy. The first known example
of steganography was a hidden message in the tattoo over
the shaved head of a messenger. The message was then
concealed by regrown hair.

Later, Indians used Kamasutra ciphers, where either
the vowels were substituted with some consonants based on
their phonetics or used in pairings to substitute their
reciprocals. Most of these ciphers were prone to
adversaries and cryptanalysis until polyalphabetic ciphers
were brought to the spotlight by Arabs.




The following figure Shows this process:-

Kamasutra Cipher
The techniques involves randomly pairing letters of the alphabet, and then substituting each

letter in the original message with its partner.

UPPERMALF | W | Z v P 0 F D E A B R | M
LOWER HALF| N H G X K 5 | C J U T Q L

The key is the permutation of the alphabet.
INTERNET SOCIETY GHANA CHAPTER
DWRCTWCR FKEDCRL VZIWI ELIXRCT

Germans were found using an
electromechanical Enigma machine for the
encryption of private messages in World War I1.
Then, Alan Turing stepped forward to introduce a
machine used to break codes. That was the
foundation for the very first modern computers.

With the modernization of technology,

cryptography got way more complex. Yet, it took a few

decades of serving spies and militaries only before
cryptography became a common practice in every
organization and department.
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Network security symbols

/A

Notes, Cautions, and Warnings are used in the following ways.

Notes are extra, but important, informarion.

Note: A Note adds important informanion, but you could srill use the product if you
didn't have that information.

Cautions indicate the possibility of loss of data or minor damage ro equipment.

Caution: A Caution tells you about a situation where there is the potential for loss of
data or minor damage w equipment. Speaal auention should be paid w
Cautions.

Warnings indicate the possibility of significant damage 1o equipment or injury o
human beings.

Warning: A Warning means that your equipment may be severely damaged or some-

one could be injured. Please take Warnings seriously.

What is cryptography ?

Cryptography is a method of protecting information and communications
throungh the use of codes, so that only those for whom the information is
intended can read and process it.

Cryptography refers to secure information and communication techniques
derived from mathematical concepts and a set of rule-based calculations
called algorithms, to transform messages in ways that are hard to decipher.
These deterministic algorithms are used for cryptographic key generation,
digital signing, verification to protect data privacy, web browsing on the
internet and confidential communications such as credit card transactions
and email.

Cryptography is the study and practice of techniques for secure

communication in the presence of third parties called adversaries. It deals
with developing and analyzing protecols that prevents malicious third
parties from refrieving information being shared between two entities
thereby following the various aspects of information security.
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Strength Of Cryptography

“There are two kinds of cryptography in this world:
cryptography that will stop your kid sister from reading your files,
and cryptography that will stop major governments from reading
your files. This book is about the latter.”

—Bruce Schneier, Applied Cryptography: Protocols, Algorithms,
and Source Code in C.

PGP is also about the latter sort of cryptography.

Cryptography can be strong or weak, as explained above.
Cryptographic strength is measured in the time and resources it
would require to recover the plaintext. The result of strong
cryptography is ciphertext that is very difficult to decipher without
possession of the appropriate decoding tool.

Cryptography can either be strong or weak considering the
intensity of secrecy demanded by your job and the sensitivity of the
piece of information that you carry. If you want to hide a specific
document from your sibling or friend, you might need weak
cryptography with no serious rituals to hide your information.
Basic cryptographic knowledge would do.

However, if the concern is intercommunication between
large organizations and even governments, the cryptographic
practices involved should be strictly strong observing all the
principles of modern encryptions. The strengith of the algorithm,
the time required for decryption, and resources used, determine
the strength of the cryptosystem being utilized.
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How does Cryptography work?

A cryptographic algorithm, or cipher, is a
mathematical function used in the encryption and
decryption process. A cryptographic algorithm works in
combination with a key—a word, number, or phrase—to
encrypt the plaintext. The same plaintext encrypts to
different ciphertext with different keys. The security of
encrypted data is entirely dependent on two things: the
strength of the cryptographic algorithm and the secrecy of
the key.

A cryptographic algorithm, plus all possible keys and all
the protocols that make it work, comprise a cryptosystem.
PGP is a cryptosystem.

What problems does it solve?

Cryptography ensures the integrity of the data
in transit as well as in rest. Every software system has
multiple endpoints and multiple clients with a back-end
servel. These client/server interactions often take place over
not-so-secure networks. This not-so-secure traversal of
information can be protected through cryptographic
practices.

An adversary can try to attack a network of traversals In
two ways. Passive attacks and active attacks. Passive
attacks could be online where the attacker tries to read
sensitive information during real-time fraversal or it could
be offline where the data is kept and read aftera Page-7




while most probably after some decryption. Active attacks
let the attacker impersonate a client to modify or read the
sensitive content before it is transmitted to the intended
destination.

The integrity, confidentiality, and other protocols
like SSL/TLS refrain the attackers from eavesdropping and
suspicious tampering of the data. Data kept in databases is
a common example of data in rest. It can also be protected
from attacks through encryption so that in case of a
physical medium getting lost or stolen, the sensitive
information won’t get disclosed.

Objectives of Cryptography

A trustworthy cryptosystem has to abide by
certain rules and objectives. Any cryptosystem that
fulfils the objectives mentioned below is considered
safe and hence can be utilized for cryptographic
properties. These objectives are as follows:

1.Confidentiality: Ensures that the information in a
computer system a n d transmitted information are
accessible only for reading by authorized parties. E.g.
Printing, displaying and other forms of disclosure.
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2.Authentication: Ensures that the origin of a
message or electronic document is correctly
identified, with an assurance that the identity is not
false.

3.Integrity: Ensures that only authorized parties are
able to modify computer system assets and
transmitted information. Modification includes
writing, changing status, deleting, creating and
delaying or replaying of transmitted messages.

4.Non repudiation: Requires that neither the sender
nor the receiver of a message be able to deny the
transmission.

S.Access control: Requires that access to information
resources may be controlled by or the target system.

6.Availability: Requires that computer system assets
be available to authorized parties when needed.
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Cryptography related Terminologies

e Cryptographv:- The art or science encompassing
the principles and methods of transforming an
intelligible message into one that is unintelligible,
and then retransforming that message back to its
original form.

e Plaintext:- The original intelligible message.

e Cipher text :-The transformed message.

e Cipher :- An algorithm for transforming an
intelligible message into one that is unintelligible
by transposition and/or substitution methods.

¢ Key :-Some critical information used by the
cipher, known only to the sender& receiver.

e Encipher (encode) :-The process of converting
plaintext to cipher text using a cipher and a key.

¢ Decipher (decode) :-the process of converting
cipher text back into plaintext using a cipher and
a key.
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e Cryptanalyvsis:- The study of principles and
methods of transforming an unintelligible
message back into an intelligible message without
knowledge of the key. Also called code breaking.

Cryptographers:- People who do cryptography.

Cryptanalysts:- Practitioners of cryptanalysis.

Cryptology:- The branch of mathematics that
studies the mathematical foundations of
cryptographic methods. Both cryptography and
cryptanalysis.

¢ Code:- An algorithm for transforming an
intelligible message into an unintelligible one
using a code-book.




Encryption & Decryption

Data that can be read and understood
without any special measures is called plaintext or
cleartext. The method of disguising plaintext in such
a way as to hide its substance is called encryption.
Encrypting plaintext results in unreadable gibberish
called ciphertext. You use encryption to make sure
that information is hidden from anyone for whom it
is not intended, even those who can see the encrypted
data. The process of reverting ciphertext to its
original plaintext is called decrvption.

The following figure shows this process:-

plaintext plaintext

Encryption & Decryption process

Source:- Internet
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Cryptographic Attacks

Passive Attacks

Passive attacks are in the nature of eavesdropping on, or
monitoring of, transmissions. The goal of the opponent is to
obtain information that is being transmitted. Passive
Attacks are of two types:

Release of message contents: A telephone conversation, an
e-mail message and a transferred file may contain sensitive
or confidential information. We would like to prevent the
opponent from learning the contents of these transmissions.

Ivaffic analysis: If we had encryption protection in place,
an opponent might still be able to observe the pattern of the
message. The opponent could determine the location and
identity of communication hosts and could observe the
frequency and length of messages being exchanged. This
information might be useful in guessing the nature of
communication that was taking place.

Passive attacks are very difficult to detect because they do
not involve any alteration of data.

However, it is feasible to prevent the success of these attack.
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Active attacks

These attacks involve some modification of the data stream
o1’ the creation of a false stream. These attacks can be

classified in to four categories:

Masquerade — One entity pretends to be a different entity.

Replay — involves passive capture of a data unit and its

subsequent transmission to produce an unauthorized effect.

Modification of messages — Some portion of message is
altered or the messages are delayed or recorded, to produce
an unauthorized effect.

Denial of service — Prevents or inhibits the normal use or
management of communication facilities. Another form of
service denial is the disruption of an entire network, either
by disabling the network or overloading it with messages so
as to degrade performance.

It is quite difficult to prevent active attacks absolutely,
because to do so would require physical protection of all
communication facilities and paths at all times. Instead, the
goal is to detect them and fo recover from any disruption or
delays caused by them.
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Transmission Techniques

Source :- Internet

Classification
Symmartric Key

Arymmnetric Key
Cryptography Cryptography

Tranaposition Sub=titution Block
Cipher Cipher Cipher




Symmetric key(secret key
cryptography )

Symmetric-key cryptography has the same key for
encrypting as well as decrypting the message. The
sender is supposed to send the key to the recipient
with the ciphertext. Both parties can communicate
securely if and only if they know the key and nobody
else has access to it. Caesar cipher is a very popular
example of symmetric key or secret key encryption.
Some of the common symmetric key algorithms are
DES. AES, and IDEA etc.

The following figure shows this process:-

plaintext

Source:- Internet
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Classical Encryption Techniques:- There are two
basic classical encryption techniques substitution and
(ransposition,

Transposition Cipher

In classical cryptography, a transposition cipher (also
known as a permutation cipher) is a method of encryption
which scrambles the positions of characters (transposition)
without changing the characters themselves. Transposition
ciphers reorder units of plaintext (typically characters or
groups of characters) according to a regular system to
produce a ciphertext which is a permutation of the
plaintext. i.e. the order of the character is changed.

Example:-
Plaintext : TRANSPOSITION

Keyword : 43152

Ciphertext: NIXASNTPISTXROQ

Plaintext @t 43152) Ciphertext
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The following figure shows this process:-

0

1T 2 9 & 5O 6 ¢ &

T

2 1T 9 3 & 6 8 9
T O P S E € R E
2 7T E P 3 € E 7

A= N

Transposition Cipher

Substitution Cipher

In classical cryptography, a substitution cipher is a
method of encrypting in which units of plaintext are
replaced with the ciphertext, in a defined manner, with the
help of a key; the "units" may be single letters (the most
common), pairs of letters, triplets of letters, mixtures of the
above, and so forth. The receiver deciphers the text by
performing the inverse substitution process to extract the
original message.

There are a number of different types of substitution
cipher. If the cipher operates on single letters, if is termed a
simple substitution cipher; a cipher that operates on larger
groups of letters is termed polygraphic. A monoalphabetic
cipher uses fixed substitution over the entire message,
whereas a polyalphabetic cipher uses a number of
substifutions at different positions in the message, where a
unit from the plaintext is mapped to one of several
possibilities in the ciphertext and vice versa.
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Example :-

Plaintext :SUBSTITUTION

Ciphertext . HFYHGRGFGRLM
ABCDEFGHIJKLMNOPQRSTUVWX
ZYXWVUTSRQPONMLKJIHGFEDC
YZ

BA

T'he following figure shows this process:-

Substitution Cipher

Source: Internet
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Modern encryption and decryption

TEChl]iqllES:- There are two types of modern

encryption and decryption techniques Stream Cipher
and Block Cipher.

Stream Cipher

In modern cryptography, a stream
cipher is a method of encrypting text (to produce
ciphertext) in which a cryptographic key and
algorithm are applied to each binary digit in a data
stream, one bit at a time. With a stream Cipher, the
same plaintext but or byte will encrypt to a different
bit or byte everytime it is encrypted. Some examples
are RC4, A5/1.

Example:-

For Encrvption :
Plaintext: pav 100
Binary of plaintext :01011001

Key stream: 10010101
Perform XOR :
Ciphertext: 11001100
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For decryption :

Ciphertext : 11001100

Key stream: 10010101
Perform XOR:

Plaintext : 01011001

The following figure shows this process:-

r Key Stream
...10010101... _\
D—

pr—
Clphertext ;.
..11001100... "’;ﬂ;

d
PAY Plaintext _J
..01011001...

Stream Cipher

Diagram of Stream Cipher Source: Internet
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Block Cipher

In modern cryptography, a block Cipher is a method of
encrypting data in blocks to produce ciphertext using a
Cryptographic key and algorithms. The Block cipher is an
encryption algorithm that takes a fixed size of input say b
bits and produces a ciphertext of b bits again. IT the input is
larger than b bits it can be divided further. Most modern
block ciphers designed to encrypt data in fixed size blocks
of either 64 or 128 bits. For different applications and uses,
there are several modes of operations for a block cipher.
Some of the common block Cipher modes are ECB, CBC,
CFB, OFB etc.

Example:- some examples of block ciphers are Data

Encryption Standard (DES), Triple DES(3DES or TDEA)
and Advanced Encryption Standard (AES).
DES:

Plaintext : Satishcj
Binary of plaintext: 0111 0011 0110 0001 0111 0100 0110 1001
0111 0011 0110 1000 0110 0011 0110 1010

Key: 1010 1110 1011 1100 1010 1001 1011 0100
1101 1001 1100 0010 1100 1001 1100 0000

DES encrypt:-

Ciphertext:- 1101 1101 1101 1101 1101 1101 1101 1101

1010 1010 1010 1010 1010 1010 1010 1010

The result is 64 bits or we can say sixteen group
containing four bits.
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The following figures shows this process:-

Plaintext Data

a ’ Block Cipher
Encryption

T

Ciphertext
Basic Block Cipher
Encyrption — ] I — I
v D = = i
—’6" '\::f
k —3 Encrypt -!‘—-) Encrypt

lc: ]__ c2 s o =

Decryption

c1 c2
“ k ‘L
~—>»| Decrypt 3 Decrypt
o —€5 {:D - =
|~ | |__r2 |

Cipher Block Chaining (CBC)

4‘2

Encrypt
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Differences between Stream Cipher

and Block Cipher

Stream Cipher

Block Cipher

Takes one byte of plaintext at a time

Takes one block of plaintext at a time.

Need less time hence simple

Need more time hence complex

Uses exactly 8 bits

Uses 64 or more bits

Utilizes substitution methods

Utilizes transposition methods

No probability of redundency

Redundency might occure

Requires less code for implementation

Requires more code for implementation

Uses one key for one time

One key can be used multiple times

Suitable for implementation in hardwares

Suitable for implementation in softwares

Faster than block cipher

Slower than stream cipher

Vernam cipher is the main implementation

Feistel cipher is the main implementation

Easy to reverse encrypted text

Difficult to reverse encrypted text

Some examples are RCA, A5/1

Some examples are DES, AES

Asymmetric key cryptography (Public

key cryptography)

Asymmetric cryptography, also known as Public key
cryptography is the field of cryptographic systems that use
pairs of related keys. Each key pair consists of a public key
and a corresponding private key. Key pairs are generated
with cryptographic algorithms based on mathematical
problems termed one-way functions. Security of public-key
Cryptography depends on keeping the private key secret;
the public key can be openly distributed without
compromising security. When someone wants to send an
encrypted message, they can pull the intended recipient’s
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public key from a public directory and use it to encrypt the
message before sending it. The recipient of the message can
then decrypt the message using their related private key.

If the sender encrypts the message using their
private key, the message can be decrypted only using that
sender’s public key, thus authenticating the sender. These
encryption and decryption processes happen automatically;
users do not need to physically lock and unlock the
message. Some of the common asymmetric key algorithms
are RSA, DSS, DSA, ECC etc.

Example:-

Bob,

Stop trying
to make
fetch happen.

plaintext

beys are different but
mathematically linked
- ..N"'--..

Bob's 4 *  Bob's
Public Key PIQENzOKW Private Key
B CXSLO3zta+ .
W |soRTuwl/7J0 ®
ﬁ Q7gzwylBuy ﬁ

- CYBn F
#Encrypt | ; # Decrypt
Cpherteat
Public key cryptography

public key

Diagram of public key cryptography

private key

Bob,

Stop trying
to make
fetch happen.

plainteat




Differences between Symmetric &

Asymmetric key cryptography

Symmetric Key Asymmetrickey
cryptography cryptography
 For Symmetric Cryptography, |, For Asymmetri Cryptography,

the same key is used for
encryption and decryption

» In Symmetric Cryptography,
the speed of encryption and
decryption is very fast

« The size of the encrypted text

in symmetric cryptography is
mostly like the size of the
original plaintext

« Both parties should know the
key in symmetric key

different keys are used for
encryption and decryption

« In asymmetric cryptography,
the speed of encryption and
decryption is slower

* In Asymmetric cryptography,
the size of the text is more
than the original plaintext

* Only one of the keys is
known by both the parties in

\ asymmetric cryptography
encryption
Symmetric encryption Asymmetric encryption
= Plaintext E Plaintext

Secret key Public key
encryption encryption
Ciphertext @ Ciphertext
Secret key

decryption

Plaintext

Private key
decryption

:ﬁ:.} Plaintext

Diagram of Symmetric vs Asymmetric key

Cryptography
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Another type of cryptography system is
hash function. Hash functions use random input values and
produce a fixed output value that can be used to identify
the user for restoring private data. It is a more complex
mechanism and hash algorithms are more secure
cryptographic systems to use. Hashing is also known by
different names such as Digest, Message Digest, Checksum
etc.

* A cryptographic hash function combines the message-
passing capabilities of hash functions with security
properties.

naccwnrd
ANFA Jr [V ¥ § ‘J, r‘lga"v‘“

€
security, and message security.

e Hach fiimnctinne are need far ervntacnrrencvy
ARG JAL ALALAN LAWALRY SEA % - L. - A LW A %Al

Example:
Input Hash sum
[ FHash DFCD3454 BBEA788A
Fox P (ncrion 1 751A696C 24D97009
; CA992D17 |

The red fox [ Hash | S2ED879E 70F71D92
[UNs across —Pg function —P GEB69570 0BEO3CE4

the ice CA6945D3
The red fox Tt 46042841 935C7FB0
walks across —» . —P| 0158585A BOJAE214
the ice L 26EB3CEA

Hash Function




The following figure Shows this process:

Arbitrary Length Input

\ Hash Function /

Fixed Length Output
{hash)

Cryptographic Hash Function

Applications of Cryptography in
everyday life

1.Digital Currency : A much-known application of
cryptography is digital cairrency wherein cryptocurrencies
are traded over the internet. Digital caarency allows people
to make payments directly to each other through an online
system. Digital currencies have no legislated or intrinsic
value; they are simply worth what people are willing to pay
for them in the market. This is in contrast to national
currencies, which get part of their value from being
legislated as legal tender. There are a number of digital
currencies the most well known of these are Bitcoin and
Ethereum.




2. E-commerce:-With the current pandemic shackling us to
our homes, the rise of ecommerce has been tremendous.
These transactions are encrypted and perhaps cannot be
altered by any third party. Moreover, the passwords we set
for such sites are also protected under keys to ensure that
no hacker gets access to our e-commerce details for
harmful purposes.

3. Digital Signatures:- A major benefit of public key
cryptography is that it provides a method for employing
digital signatures. Digital signatures let the recipient of
information verify the authenticity of the information’s
origin, and also verify that the information was not altered
while in transit. Thus, public key digital signatures provide
authentication and data integrity. A digital signature also
provides non-repudiation, which means that it prevents the
sender from claiming that he or she did not actually send
the information. These features are every bit as
fundamental to cryptography as privacy, if not more.

A digital signature serves the same
purpose as a handwritten signature. However, a
handwritten signature is easy to counterfeit. A digital
signature is superior to a handwritten signature in that it is
nearly impossible to counterfeit, plus it attests to the
contents of the information as well as to the identity of the
signer.



The basic manner in which digital signatures are created is
shown in the following figure.

privaie key public key

original isxi

Simple Digital Signature

PGP uses a cryptographically strong hash function on the plaintext
the user is signing. This generates a fixed-length data item known
as a message digest. (Again, any change to the information results
in a totally different digest.)

Then PGP uses the digest and the private key to
create the “signature.” PGP transmits the signature and the
plaintext together. Upon receipt of the message, the recipient uses
PGP to recompute the digest, thus verifying the signature. PGP can
encrypt the plaintext or not; signing plaintext is useful if some of
the recipients are not interested in or capable of verifying the
signature.

As long as a secure hash function is used, there is no way to take
someone’s signature firom one document and attach it to another,
or to alter a signed message in any way. The slightest change to a
signed document will cause the digital signature verification
process to fail.
The following figure Shows this process:-
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l digest signed
with private key s

1 st
<

private hay
used for signing

Digital signatures play a major role in authenticating and
validating the keys of other PGP user.

4.Digital Certificates: A digital certificate functions
much like a physical certificate. A digital certificate is
information included with a person’s public key that helps
others verify that a key is genuine or valid. Digital
certificates are used to thwart attempts to substitute one
person’s key for another.

A digital certificate consists of three things:
* A public key
* Certificate information (“Identity” information about the
user, such as name, user ID, and so on.)
* One or more digital signatures

The purpose of the digital signature on a certificate is
to state that the certificate information has been attested to
by some other person or entity. The digital signature does
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not attest to the authenticity of the certificate as a whole; it
vouches only that the Signed identity information goes
along with, or is bound to, the public key.

Thus, a certificate is basically a public key with one or two
forms of ID attached, plus a hearty stamp of approval from
some other trusted individual.

The following figure shows this process:-

Diagram of Digital Certificate

Cryptanalysis

The process of attempting to discover X or K
or both is known as cryptanalysis. The strategy used by the
cryptanalysis depends on the nature of the encryption
scheme and the information available to the cryptanalyst.
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There are various types of cryptanalytic attacks based on
the amount of information known to the cryptanalyst.

Cipher text onlv — A copy of cipher text alone is known to
the cryptanalyst.

Known plaintext — The cryptanalyst has a copy of the
cipher text and the corresponding plaintext.

Chosen plaintext — The cryptanalysts gains temporary
access to the encryption machine. They cannot open it to
find the key, however; they can encrypt a large number of
suitably chosen plaintexts and try to use the resulting
cipher texts to deduce the key.

Chosen cipher text — The cryptanalyst obtains temporary
access to the decryption machine, uses it to decrypt several
string of symbols, and tries to use the results to deduce the
key.

The following figure Shows this process:-

_—I»_\l /l_-b_
=]
dha—

Cryptanalysis

Source: Internet Page-33



Counter Measures

e Use rubber keyboard or virtual keyboards to prevent
keystroke sounds.

e Use acoustic printers.
e Use acoustic case for CPU.

Conclusion

o Cryptography, being an art of encrypting and decrypting
confidential information and private messages, should be
implemented in the network security to prevent any
leakageand threat.

e It can be done by using any of these techniques discussed
above for fortifying the personal data transmission as well

as for secure transaction.

e By using cryptography techniques confidentiality,
authentication, integrity, access control and availability of
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data is maintained.

Secure communication is obtained.

The current trend in society indicates that cryptography is
gaining importance. One day cryptography may be widely
used throughout the Internet: for electronic mail, for
sending documents that are sold over the Web, and even
perhaps for all network communication between routers
orswitches in the Internet. The use and debate on
cryptography promises to be prominent for many more
years.
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1. ETYMOLOGY

The term ,FRACTAL’ was coined by the mathematician Benoit
Mandelbrot in1975. Mandelbrot based it on the latine FRACTUS,
meaning ‘broken’ or ‘fractured’ and used it to extend the concept of
theoretical fractional dimensions to geometric patterns in nature.

FRACTALS

» A fractal is a mathematical
object that is both sclf-similar and
chaotic.

osclf-similar: As you magnify,
you sce the object over and -
over again in its parts.

schaotic: Fractals are
infinitely complex.

*Amazingly, these beautiful

objccts of breath-taking
complexity are generated by
relatively simple mathematical

IOCCSSCS.




INTRODUCTION

Fractals are objects that are self similar at different scales.

Think of a tree- it has a trunk that has branches and those branches self
have branches coming off of them and those have sub-branches and so
on. So that is a fractal.

Fractals turn out to be a good way to describe many objects in nature.In
this unit we will explore fractals, both visually and mathematically.

It is striking how many natural objects there are with this kind of
property. Let"s lookat a simple example,

Trees- Trees are fractal and let be explain the notion of self similarity.

Let"s take a picture of a tree. Now we will take part of that picture and
crop it out andblow it up. We can see that the structure of this blown up
part of this picture is very similar to the structure of the whole picture
itself. Let"s do it again. Let"s take a part of this picture within the red box
and let"s blow it up. Again, the structure that you see inside the blown up
part of this picture looks very similar to the previous two pictures and
notice that this third picture is a very tiny part of this original picture.

Now we can do the same thing again. Take a part of the third picture ,
blow it up again we have structures that look very tree-like. So, no
matter how far down you goup to a certain point in these picture you can
keep taking little crops, blowing them up and seeing that they have very
similar kinds of structure. That"s the crux of the notion of self-similarity

at different scales.




sttt enitocs com - 4 LA

Picture: Fractal In Flowers & Fruits
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The actual definition of fractal means that the object is perfectly self similar at all
possible scales.

So the objects that we are going to talk about in nature are only fractal-like. They are
not real fractals from the mathematical sense, but [ am going to use the term ‘fractal’
to describe them anyway. So here is a picture of a special kind of broccoli that has
fractal properties. We can see that each of these little broccoli mounds consist of other
Iittle mounds that themselves have the same structure and so on.

Leaf veins are fractal in the same way that trees are fractal.

Broccoli Mounds
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HISTORY

The history of fractals traces a path from chiefly theoretical studies

To modern applications in computer graphics, with several notable
people contributing canonical fractal forms along the way. A common
theme in traditional African architecture is the use of fractal scaling,
whereby small parts of the structure tend to look similar to larger parts,
such as a circular village made of circular houses.

According to Pickover, the mathematics behind fractals began to take
shape in the 17th century when the mathematician and philosopher
Gottfried Leibniz pondered recursive self-similarity (although he made
the mistake of thinking that only the straight line was self-similarin this
sense).

In his writings, Leibniz used the term "fractional exponents”, but
lamented that "Geometry" did not yet know of them. Indeed, according
to various historical accounts, after that point few mathematicians
tackled the issues and the work of those who did remained obscured
largely because of resistance to such unfamiliaremerging concepts, which
were sometimes referred to as mathematical "monsters”. Thus, it was
not until two centuries had passed that on July 18, 1872 Karl Weierstrass
presented the first definition of a function with a graph that wouldtoday
be considered a fractal, having the non-intuitive property of being
everywhere continuous but nowhere differentiable at the Royal Prussian
Academy of Sciences.In addition, the quotient difference becomes
arbitrarily large as the summation indexincreases. Not long after that, in
1883, Georg Cantor, who attended lectures by Weierstrass, published
examples of subsets of the real line known as Cantor sets, which had
unusual properties and are nowrecognized as fractals. Also in the last
part of that century, Felix Klein and Henri Poincaré introduced a
category of fractal that has come to be called "self-inverse” fractals.One
of the next milestones came in 1904, when Helge von Koch, extending
ideas of Poincaré and dissatisfied with Weierstrass's abstractand analytic
definition, gave a more geometric definition including hand-drawn
images of a similar function, which is now called the Koch snowflake.
Another milestone came a decade later in 1915,
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when Wactaw Sierpinski constructed his famous triangle then, one
year later, his carpet. By 1918, two French mathematicians, PierreFatou
and Gaston Julia, though working independently, arrived essentially
simultaneously at results describing what is now seen as fractal
behaviour associated with mapping complex numbers and iterative
functions and leading to further ideas about attractors and repellors (i.e.,
points that attract or repel other points), which have become very
important in the study of fractals.Very shortly after that work was
submitted, by March 1918, Felix Hausdorff expanded the definition of
"dimension", significantly for the evolution of thedefinition of fractals, to
allow for sets to have non-integer

dimensions. The idea of self-similar curves was taken further by Paul
Lévy.
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FRACTAL GEOMETRY,

The word fractal from the Latin word ,Frangere" which means to break,
was coined by Benoit Mandelbrot in 1975.

“Fractal objects contain structures nested within one another. Each
smaller structure is a miniature, though not necessarily identical, version
of the larger form (Peterson,1988,pp.114-115).” In other words, one part
of the object is a scaled down version of the entire object. The Koch

curve and the Sierpinski gasket are classic, yet simple, examples of self-
similar objects.

“* Geometry of Fractal

Most of the fractals are self-similar geometrical objects.
Several parts of a fractal look similar as the entire image.
It is possible to copy the fractal several times on itself.

Examples are:clouds, forests, galaxies, leaves, feathers, carpets,
bricks etc.

They are complex at your first sight, while in fact can be described
by a simple algorithm.

They can be generated by repeated self copy or partial self copy.
Therefore, the redundancy is very high.
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Transformation between Fractals
» Imagine a special type of photocopying machine that reduces the image to be copied by a half
and reproduces it three times on the copy.

”é"

Transformation

e All the copies seem to be converging to the same final Image.

e We call the final image the attractor of the copy machine.

e Because the copying machine reduces the input image, any initial image will be reduced to a
point as we repeated run the machine.

e Thus, the initial image placed on the copying machine does not affect the Final Attractor.

e In fact, it is only the position and the orientation of the copies that determines what the final
image will look like.

e We only describe these transformations.

e Different transformations lead to different Attractors.

e The transformations must be Contractive.

e In practice, Affine transformations are rich enough and yield interesting set of Attractors.

X a b x
T |

+
yood Y[

e

Each Affine transformation can skew, stretch, scale and translate an input image.

Example by Affine Transformation
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Examples by Affine Transformation

e Each Affine transformation t; is defined by 6 numbers a;, b;, d;, €; and f;.

e Storing images as collections of transformation leads to image.
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> Dimensions

Dimension is a property of a mathematical object that refers to the extent it
occupies the space in which it is embedded. There are many formal definitions of
dimension, if the definition allows non-integer values (a fraction), it is a Fractal
dimension. The box-counting dimension are defined over a vector space, but there is

also the packing dimension, compass dimension etc.

Regular dimensions
D=1 Magnify by R =2
Get N= 2
7 ] copies N=R'
2D (D=2)

Magnify by R

=3 GetN=9

copies N= 3> = R?
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General rule for Dimensions

* A figure 1s in D dimensions
e [If I magnify the length by R, then I would get R” copies
- N=R°

The dimension formula

Define R as the magnifying factor,

Define N as the number of 1dentical(“self-
duplicating™) copies.Then the dimension of a
figureis:

D= log(M)
og(R)

IT’S DIMENSION FOR SOME SHAPES

Koch Curve:

Stage O

N
o> 2%

Stage 4

Random orientation
of the genarator

According to the definition the dimension of Koch Curve is,

D= lgt=126 N=4and M =3
log3
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Sierpinski’s Triangle:

AL

Level 0 Level 1

Anih

Level 2 Level 3

According to the definition the dimension of Sierpinski’s Triangle is,

D=1g3=153,N=3and M =2
log2
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Sierpinski’s Carpet:
Step 0: Initiator Step 1: Generator Step 2
Step 3 Step 4

According to the definition the dimension of Sierpinski’s Carpet is,
D= l’_;’g.;’ =189, N=8and M =3
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< CHARACTERISTICS OF FRACTAL

A fractal often has the following features:-
Fractal is too irregular to be easily described in traditional euclidean
geometriclanguage.

Exact self similarity-Fractal is identical at all scales such as the Koch
snowflake.

Quasi self similarity- Fractal approximates the same pattern at
different scales. It may contain small copies of the entire fractal in distorted
and degenerated forms ; e.g. the Mandelbrot Set's satellites are
approximations of the entire set but note exact copies.

Statistical self similarity- Fractal repeats a pattern Stochastically so
numerical or statistical measures preserved across scales; e.g., randomly
generated fractals like the well-known example of the Coastline of Britain
for which one would not expect to find a segment scaled and repeated as
neatly asthe repeated unit that defines fractals like the Koch snowflake.

2x120 degrees recursive IFS

It has a Hausdroff dimension which is Greater than its topologicalDimension
( although this requirement is not met by space filling Curves such as the Hilbert
Curve ). It has a simple and recursive definition.
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<+ KFractal

A Fractal is a never- ending patters. Fractals are infinitely complex patterns that

are self-similaracross different scales.

Fractals are considered to be important because they define images that are

otherwise cannot bedefined by Euclidean geometry.

Self-Similar Objects and Fractal Dimensions

e Fractal dimension is a measure of how “complicated” a self-similar figure is.
e i.e., to measure the fractal Dimension, the picture must be self-similar.
e Self-similar regular shapes: Line, Plane, Cube

e Self-similar irregular shapes: cauliflower, Galaxy, Coast Line.

Scaling Factor
We can divide the object in N self-similar pieces then, how to get original object from
size of theseN pieces?
Scaling Factor: If we want to get original object from any part of self-
similar then wehave to scale the object using scaling factor.

For example:
If we divide the line in 2 equal pieces then

SF is 4,If we divide the plane in 4 equal
pieces then SF is 2

Mandelbrot defined a fractal to be a set with Hausdroff dimension strictly greater than
its topological dimension. (The topological dimension of a set is always an integer
and is 0 if it is totally disconnected. If each point has arbitrarily small neighbourhoods
with boundary of dimension 0 and so on.)
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The Hausdroff dimension. more specifically, is a further dimensional

number associated with a given set, where the distances between all

members of that set are defined. Such a set i1s termed a metric space. The

dimension 1s drawn from the extended real numbers, R, as opposed to more

intuitive notion of dimension, which is not associated to general metric

spaces, and only takes values In the non-negative integers.

2.7 Fractal Dimension (Or Non-integer dimension)

Input:

e No of self-similar pieces
e Scaling Factor

Fractal Dimension=log (No. Self-Similar Object)/log (Scaling Factor)

Dimension for the plane=2

Dimensions for the cube=3

While the Hausdroff dimension of a single point is zero, that of a line segment is

1,of a square i1s2,and of a cube is 3,for fractals such as this, the object can have a non-

integer dimension.

Example of non-integer dimensions:

Division of certain sets into four parts. The parts are similar to the whole with ratios:

L

8

1for line segment
4

1 for square

2

é-for middle third Cantor set

1for von Koch curve
3
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<« Cantor Set

The Cantor ternary set is created by iteratively deleting the open middle third from

a set of line segments.

Choose a particular portion say between two points

0 and 1.Let Fo=[0,1].
We first remove the open middle third segment ( ,2) of [0,1]. Then define F, as

By=q0,1]U[2,1]
3 3

Next, we remove the open middle third of each of the two closed intervals in F, to
obtain the set F»

F,=[0,1]U[2,3]U[S,7]VU[8,1]
9 9 9 9 9 9

We see that F, is the union of 22 = 4 closed intervals each of which is of the form [k /
32 (k+1)/ 3

] each having length 1/3%.

Next, we remove the open middle thirds of each of the sets to get F3. Then Fs is the

union of 2* = 8closed intervals of length 1/3°.

Continuing this way, we obtain a sequence of closed sets F, such that

e FiIoF,oFo0...
e F, is the union of 2" interval of the form [ k/ 3", (k+1)/ 3" ] each of length 1/3"

e F,. is obtained from F, by removing the open middle third of each of the intervals in Fy, .
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The set F = n,€ey F, is called the Cantor set. The Cantor ternary set contains all points in

the interval[0,1] that are not deleted at any step in this infinite process.

13

Cantor Set

< Non — Integer Dimension

Using this fractal as an example, we can prove that the fractal dimensions is not an
integer. Looking at the picture of the first step in building the Sierpinski Triangle, we

can notice that if the linear dimension of the basis triangle is doubled, then the area of
the whole fractal (black triangles) increasesby a factor of three.

Using the pattern given above, we can calculate a dimension for the Sierpinski
Triangle.

lo

NS |w
Q

The result of this calculation proves the non-integer fractal dimension.

The number of triangles in the Sierpinski Triangle can be calculated with the formula;

N =3

Where N is the number of triangles and k is the number of iterations.
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APPLICATIONS OF FRACTAL GEOMETRY

The facts that fractals are abundant in nature and natural phenomena, is
itself a testimony to the potential applicability and design efficiency of these shapes.

Fraction shapes capture the fine details and organic irregularity of natural forms like

clouds, cost lines and land shapes.

Fractals have variety of applications in science. Because it"s properly of

self-similarity exists everywhere. They can be used to model plants, blood vessels,

nerves, explosions, clouds, mountains, turbulence, etc. Fractal geometry models

natural objects more closely than does other geometries.

Engineers have begun designing and constructing fractals in order
to solve partial engineering problems. Fractals are also used in computer graphics are
even in composing music.

Fractal geometry has permeated many areas of science. Such as
astrophysics, biological science, and has become one of the most important
techniques in computer graphics. Architects are using fractal geometries to create
more impressive buildings. Digital artists use fractal geometries to create interesting
art work which engages views at variable scales Game designers are always seeking
to create natural organic environments. Which do not seem to be constructed and
synthetic. Fractal geometry can be applied in such environments to include random
elements which can enrich user experience.

Fractals are also used to generate natural patterns which can create
effective camouflage and preclude artificial repetitive motifs. Fractals have been used
by seismologists to understand earthquake phenomena and gain deeper understanding
of the earth physical constitution. As well as the distribution pattern of earthquakes.

Financial theorists have even applied fractals to understand and forecast stock market

Patterns
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€ Fractals in Surface Physics
Fractals are used to describe the roughness of surface is characterized by a combination of

two different fractals.

% Fractals in Computer Graphics
The biggest usage of fractals in everyday life is in computer science. Many images
compression schemes use fractal algorithms to compress computer graphics files to
less than a quarter of their original size.
Computer graphics artists uses many fractals forms to create text termed
landscapes and other intricate models.
Its possible to create all sorts up realistic “Fractal forgesies” images ‘of
natural scene, such a lunar landscape, mountain ranges and coastlines. We can se¢

them it may special effects in Hollywood movies and also in television ads. The

“genesis effect” in the films “star trek II”. “The worth of khan” was created using
fractal used to create the geography of a moon. and to draw the outline of dreaded
“death star”. But fractal signals can be used to model natural objectives. Allowing up

to define mathematically our environment with a higher accuracy than ever before.

+» Fractals in Biological Science
Biological scientists have traditionally model nature using Euclidean
representations of natural object or series. They represented heartbeats as sine waves.
Conifer trees as cones, animals habit a simple area, and cell membranes as curves or
simple surfaces however scientists have come to recognize that many natural
constructs are better characteristic using fractal geometry. Biological systems and
processes are typically characterized by many levels of substructure with some

general pattern repeated in an ever-decreasing cascade.

Page - 20




Scientists discovered that basic architecture of a chromosome in tree
like: every chromosome consist of many “mini chromosomes” and therefore can be
treated as fractal for a human chromosome, for in theory one can argue that everything

existent on this world is fractal: -

The branching of tracheal tubes

The leaves in trees

The veins in hand

Water swirling and twisting out of a tap

A puffy cumulus clouds

Tiny oxygen molecules or the DNA molecules
The stocks market

YOV VvV V¥ ¥V ¥

All of these are fractals from people ancient civilizations to the marker of star trek

II: The worth of khan scientists. Mathematicians and artists alike have been captivated
by fractal and have utilized them in their work.

#» Fractals in Film Industry

One of the more trivial applications of fractals is their visual effect. Not only do

fractals have a stunning aesthetic value that is, they are remarkably pleasing to the
eye, but they also have a way to trick the mind. Fractals have been used commercially

in the film industry. Fractal images are used as an alternative to costly elaborate sets to
produce fantasy land scape.

% Fractals in Astrophysics

Nobody really how many stars actually glitter in our skies, but have you ever
wondered how they were formed and ultimately found their home in the world?
Astrophysicist believe that the key to this problem in the fractal nature of interstellar
gas. Distributions are hierarchical, like smoke trails or billow cloud in the sky and the
clouds in space. Giving them an irregular but repetitive pattern that would be
impossible to describe without the help of fractal geometry.
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< Fractals in Image Compression

Most use full application of fractals and Fractal geometry in image compression it is

also one of the more controversial ideas. The basic concept behind of fractal image
compression is to take an image and express it as an it rated system of functions the
image can be quickly displayed, and at any magnification with infinite levels of
fractal details. The largest problems behind its ideas is deriving the system of

functions which describe an image.

« Fractals in Fluid Mechanics

The study of turbulence in flows is very adapted to fractals. Turbulent flows are
chaotic and very difficult to model correctly. A fractal representation of them helps
engineers and physicists to better understand complex flows. Flames can also be
simulated. Porous media have a very complex geometry and are well represented by

fractal. This is actually used in petroleum science.

&* Fractals in Medicine

Biosensor interactions can be studied by using fractals

< Fractals in Astronomy

Fractals will may be revolutionize the way that the universe is seen. Cosmologists
usually assume that matter is spread uniformity across space. But observations show
that is not true. Astronomers agree with that assumptions on “small” scales. But most
of them think that the universe is smooth at very large scales. However, a dissident
group of scientists claims that the structure of the universe is fractal at all scales. If
this new theory is proved to be correct, even the big bung models should be adapted.
Some years ago, we proposed a new approach for the analysis of galaxy and cluster
correlations abused on the concepts and methods of modern statistical physics. This
led to the surprising result that galaxy correlations are fractal and not homogeneous
up to the limits of the available catalogues. In the meantime, many more redshifts

have been measured and we have extended our method also to the analysis of number
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galaxy structures are highly irregular and self-similar. The usual statistical method, based
on the assumption of homogeneity, are therefore inconsistent for all the length scales
probed until now. A new move general conceptual frame work is necessary to identity the
real physical properties of these structures. But present cosmologists need more data about
the matter distribution in the universe to prove (or not) that we are living in a fractal

universe

< Fractals in Telecommunications

A new application is fractal- shaped antennae that reduce greatly the size and the weight of
the antennae. Fractenna is the company which sells these antennae. The benefits depend on
the fractal applied, frequency of interest, and so on. In general, the fractal parts produce
_fractal loading" and makes the antenna smaller for given frequency of use. Practical

shrinkage of 2-4 times is realizable for acceptable performance. Surprisingly high

performance is attained.

«* Fractal Antenna

A fractal antenna is an antenna that uses a fractal, self-similar design to maximize the
length, or increase the perimeter (on inside section or the outer structure), of material that
can receive or transmit electromagnetic radiation within a given total surface area or volume.

cohen use this concept of fractal antenna. And it is theoretically it is proved that fractal

design in the only design which receives multiple signals.

A fractal antenna




Physiological Responses

Humans appear to be especially well-adapted to processing fractal patterns with D
values between 1.3 and 1.5. When humans view fractal patterns with D values

between 1.3 and 1.5, this tends to reduce physiological stress.

11 Neural activity
«« Blood flow
| Blood distribution
Blood flow 1/-/ i BAeamate
petshotam ¥ " ; 111 Veatilation and gas exchange
: ral 111 Blood flow
Blood flow 1/~/1 | | Y 1 Blood distribution?
Metabolism |1

" / "b

] &
| Blood flow = 111Cardiac output
1 Metabolsm % sﬁ\e

¥ 111 Coronary blood flow
' ) 111 Oxygen consumption

- »’ﬁ& I Blood flow distribution?
Pancreas, gut & . :
:Gd"ﬁ-l flow ? o 3’ 1 Hemoconceantration
| Metabolism 7 7 . % ! Oxygen content
f : -/ 1 Levels of energy substrates
{ /= Blood flow {
!'l m WM““‘ 111 Arterial dilatation
! ot hoam 11 Capillary pressure and energy substrate exchange
. blood { Blood distribution
11§ Metabolism ."d S : ! Venoconstriction
111 Oxygen extraction and consumption
| Mechanical strains
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FRACTAL ART

Fractal art is a form of algorithmic art created by calculating fractal objects and
representing the calculation results as still digital images, animations, and media.
Fractal art developed from the mid-1980s onwards.It is a genre of computer

art and digital art which are part of new media art. The mathematical beauty of
fractals lies at the intersection of generative art and computer art. They combine to

produce a type of abstract art.

Fractal art (especially in the western world) is rarely drawn or painted by hand. It is
usually created indirectly with the assistance of fractal-generating software, iterating
through three phases: setting parameters of appropriate fractal software; executing
the possibly lengthy calculation; and evaluating the product. In some cases,

other graphics programs are used to further modify the images produced. This 1s
called post-processing. Non-fractal imagery may also be integrated into the

artwork. The Julia set and Mandelbrot sets can be considered as icons of fractal art.

It was assumed that fractal art could not have developed without computers because
of the calculative capabilities they provide. Fractals are generated by
applying iterative methods to solving non-linear equations or polynomial equations.

Fractals are any of various extremely irregular curves or shapes for which
Any suitably chosen part is similar in shape to a given larger or smaller part
when magnified or reduced to the same size.
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APPLICATIONS IN TECHNOLOGY

o Detecting 'life as we don't know it' by fractal analysis
¢ Enzymes (Michaelis-Menten kinetics)

¢ Generation of new music

¢ Signal and image compression

e Creation of digital photographic enlargements
e Fractal in soil mechanics

e Computer and video game design

e Computer Graphics

¢ Organic environments

e Procedural generation

e Fractography and fracture mechanics

¢ Small angle scattering theory of fractally rough systems
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Digital sundial
Technical analysis of price series
Fractals in networks
Medicine
Neuroscience
Diagnostic Imaging
Pathology

Geology

Geography
Archaeology

Soil mechanics
Seismology

Search and rescue

Technical analysis
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Introduction

Wolfram Mathematica is a software system with built in libraries for several
areas of technical computing . It is conceived by Stephen the beginning
of modern technical computing.lt allows machine learning statistics,
symbolic computation, data manipulation, network annalysis, time seris
analysis , NLP, optimization, plotting functions and various types of dgta
Jimplementstion of algorithms , creation of user interfrance ,and interfacing
with programs written in other programming language.

Details

Developer Wolfram Research
Initial release June 23, 1988
Stable release February 10, 2023

Written in Wolfram language

Platform windows ,macos ,linux online service

All platform support 64-bit
Implementations

Available in English,Chinease , Japanese

Type Computer algebra , numerical

Computation ,information visualization
Statistics , user interface creation




Importance of Mathematica

When Mathematica version 1 was released ,the New York Times wrote
that “ the importance of the programe can not be overlooked” , and
Business Week later ranked Mathematica among the ten most important
new products of the year. Mathematica was also hailed in the technical
community as a major intellectual and practical revolution . Affirst ,
Mathematica’'s impact was felt mainly in the physical science |,
. engineering and mathematics . But over the years Mathematica has
, become important in a remarkably wide range of fields .Mathematica is

used today throughout the sciences physical ,biological ,social and other

and counts many of the world’s foremost scientists among its enthusiastic

supporters .It has played a crucial role in many important discoveries and
has been the basis of thousands of technical papers .

History of Mathematica

For more than 50 years Mathematica has been at the forefront of
assessing the effectiveness o policies and programs to improve public
well-being .

The improvement of Mathematica are as follows :

VERSION RELEASE DATE

June 1988
January 1991
September 1996
May 1999
June 2003

May 2007
November 2008
November 2010
November 2012
July 2014
August 2016

S 20 ooOoONOOOODAD WD -

-



|
|
|
1
|
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April 2019

12
December 2021
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Now february 10 ,2023 the stable version was released .This is the
latest version of Wolfram Mathematica

Uses of Mathematica

Mathematica can be used wherever & whenever calculations and
computations are needed.It can be used to solve very simple addition
problems or to solve complex equations and advanced physics
problems.The visualisations & graphical capabilities if Mathematica make
it very useful for plotting all kinds of data & functions.The uses of
Mathematica are as follows :

1)Differential calculus:
We can calculate limit, derivatives, Maximum & minimum values, power
series using Mathematica.

2) Integral Caiculas:
We can easily calculate anti-derivative, definite integrals, Riemann sums
using this.

3) Multivariate Calculas :
Partial derivatives, maximum minimum values, the total differential,
multiple integrals are also calculated by Mathematica.

4)Ordinary Differential Equations:
Analytical solutions, numerical L transformation are calculated by
Mathematica.

5)Two & Three Dimensional Graphics:
We can use this for plotting functions of a single variable and two
variables. we also use this for two and three dimensional plotting.




6)Linear Algebra:
We can calculate vectors & matrices, we can do matrix operation ,matrix

manipulation, test orthogonality and diagonalization, and also find eigen
values & eigen vectors.

Application of Mathematica in other fields

Mathematica is used almost all the field, like as follows :
¢ Chemical engineering
e Electrical engineering

Software engineering

Web development

Business analysis

Operation research

Finance

Aerospace

Defence

Statistics

Mathematics

BioScience

Chemistry

Physics

Astronomy

Bioinformatics

Education etc.




Algebraic computation

1.41421

Exp[2+91I] //N
-6.73239+3.04517 1

Solve [x*3-2%x+1==0, x]

“xalL{xaiw_l_Jgﬂ,{XAg(-1+¢§U}

Prime [1000]

7919
Quotient [62173467, 9542]

6515

N[Pi]
3.14159

Solve[ArcSin[x] = 0, x]

{{x=>0}}

Solve [(x"2+2x) * (x"2-2x) =0, x]
{{x>-2}, {x>0}, {x=>0}, {x-2}}
Solve[{x-y =0, x*2+y"*2==1}, {x, ¥}]

1 1
(x5-—— yo-—)s fxo ——=rv>—])

e E e

Expand[(1+x+3*y) "4]

1+4x+6x2+4x3+x4+12y+36xy+36x2y+
12)&:}y+54yz+108xy2+54x?y2+108y3+108xy3+81y4

Factor[x”~10 -1]
(-1+x) (1+%) (1—x+x~’-—x3+x4) (1+x+x%+x>+x!
Integrate [Exp[-x*2], {x, O, Infinity}]

%n
2




PLOTTING OF 2 D & 3 D FIGURE USING WOLFRAM MATHEMATICA

The Wolfram Mathematica has many way to plot function and
data.It automates many details of plotting such as sample rate ,
aesthetic choice , focusing on the region . Plot is a simple two dimentional
plotting function in Mathematica .Plot takes two arguments when it

is called and these and these arguments contain numerous parts.

Here we discuss this with some folloing example

Plot[sSin[x], {x, 0, 2% Pi}]

10+

-

0S|

-10F

Plot[Tan[x], {x, -3, 3}]




RAMA.nb | 3

ploc[sm[x*] , {x, 0, 3}, PlotStyle » RGBColor[0., 0.56, 0.06]]

101

r—r—r

(=3
wn
T

i " 1 1 3. TR,
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-05
[
-1.0}
P T 1. T 1
Plot|Sin|—|, {x, O, 27}, PlotStyle - RGBColor[0.72, 0.09, Q,]J
x
1.0
05
1 1 Mol okl 1 1 1 L | I
1 2 3 4 5
-05
Plot[sin[l/x], {x, 0, .1}]
10 ﬂ N
05
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Pp 0.04 0.06 048 0.10
-05




4 | RAMA.nb

Plot[{Sin[x], Cos [x]}, {x, O, 3}, Filling -+ Automatic]

10— —
4 V ; b

.
m—

-10}

Plot[{Sin[x], Sin[2x], Sin[3x]}, {x, 0, 2% Pi}]

1.0-E
st/

=10

Plot [Cot[x], {x, -3, 3}]
o

L
Wk




Plot[Cos[x], {x, -7, &}, PlotStyle -» RGBColor[l., 0.11, 0.33]]
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6 | RAMA.nb

Plot3D[ExP[- (x2+yz)]' {(x, -2, 2}, {y, -2, 2}, PlotStyle - RGBColor[0.44, 0.69, 1.]]

Plot3D[Sin[X+Y2], (x, -3, 3}, {y, -2, 2}, PlotStyle -» RGBColor([0.75, 0.44, 1.]]
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"21 2): {YI "21 2}]

Plot3D[{x*2+Y"2, _xr2-y*2}, {x,




Inverse of a 2x2 matrix:
Inverse[{{1.4, 2}, (3, -6.7}))

{{0.435631, 0.130039}, {0.195059, -0.0910273))

Enter the matrix in a grid:

123
lnverseqtzzzll

517
{ 2 11 1

7’ a2’ 21} {7 21’ 21} _’“ﬁ 7}}

Inverse of a symbolic matrix:

Inverse[{{u, v}, {v, u}}]

e R v e et )

Transpose a 3x3 numerical matrix:

{3,2,5}{4,3,4},{1,1,2p

Visualize the transposition operation:




Eigenvalues of an exact matrix:

Eigenvalues[{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}]
(56 5) 5 6- )}

Symbolic eigenvalues:

Eigenvalues[{{a, b}, {c, d}}]

{;(ud— Va+4bc-2ad+d?) ;(a+d+ Vo' +abc-2ad+)}

Find the determinant of a symbolic matrix:

o P

=dj2dz1+a113d2

The determinant of an exact matrix:
Det[{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}]

0




Derivative of a defined function:

flx_] := Sin[x] + xA2
f'[x]

2 x + Cos[x]

This is equivalent to ff:)
DIf[x], x]
2x + Cos[x]
Derivative at a particular value:
f'[0.5]
1.87758

This is equivalent to f(x) |x— 05-

D[f[x], x] /. x= 0.5

1.87758

The second derivative:

fll[x]

2 -Sin[x]




Limit at a point of discontinuity:

Limit[Sin[x]/x, x => 0]
1

Plot{Sin[x]/x, {x, -1, 1}, Epilog - {PointSize[Large], Point[{0, 1N

Limit at infinity:
1+ Sinh[x]

Limit[ —

,x-bao]

1
2

1+Sinh[x] 1
Plot[{ e
Exp[x] 2
PlotStyle - {Automatic, Dashed}, PlotRange -» {0, 1}]

}, {x, 0, 10},

1.0‘.

0.2




Advantages of Mathematica

The coding of Mathematica is a simple one .

It has good hardware options.

Very powerful language

Name convention are great .

Many paradigms OOP/List/pattern matching /logic programming.
Very strong symbolic computation

Ability of compile mode of some code

Very good visualisation

Disadvantages of Mathematica

Its cost is high.

Its GUl is not so good

Cost for extensions

Long learning curve

Slow interpreter

It is hard to write modular code
OORP is possible but very unusual.

Conclusion:

Mathematica has attracted wide attention in the world.The diversity
of Mathematica's user base is striking. Ever since Mathematica was
first released, it's user base has grown steadily and by now total
number of users is above a million . Mathematica is used almost all
the field Engineering, Statistics, Mathematics, Finance
Computational field . Mathematica is also heavily used in
education.It has become an important tool for both technical & non
technical field.
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GAME THEORY

INTRODUCTION

The game theory is said to be the science of strategies which comes under the
probability distribution. It determines logical as well as mathematical actions that
should be taken by the players in order to obtain the best positive outcomes for
themselves in the game. The games studied in the game theory may range from chess
to tennis and from child-rearing to takes over. But there is one thing common that

such an array of games in independent, out-comes for each players depends upon the
strategies of all.

In other words, games theory deals with mathematical models of co operation and
conflict between rational decision marks game theory can be define as the study of
decision—making in which the players must make strategies affecting the interests of
other players.

USEFUL TERMS IN GAME THEORY

Any time we have a situation with two or more players that involve known payouts or
guantifiable consequences, we can use game theory to help determine the most likely
outcomes. Let's start by defining a few terms commonly used in the study of game
theory:

« Game: A competitive situation will be called a game.

« Players: A strategic decision-maker within the context of the game.

« Strategy: A complete plan of action a player will take given the set of
circumstances that might arise within the game.
A strategy may be two types:-
i)Pure Strategy
ii)Mixed strategy

« Optimal Strategy: The course of action which maximizes the profit of a player
or minimizes his loss is called an optimal strategy.

« Payoff: The outcome of playing the game is called payoff.
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« Payoff Matrix: It is a table showing the outcome or payoff of different
strategies of the game.

« Equilibrium: The point in a game where both players have made their decisions
and an outcome is reached.

« Value of the game: It refers to the expected outcomes par play. When players
follow their optimal strategy. It is generally denoted by V.

LITERATURE REVIEW

Game theoretical concepts have been utilized to analyze problems for millennia,

long before game theory was a formally-defined field. One interesting example is that
the Talmud, the Jewish holy book that provides the basis for Jewish law, prescribes
solutions for allocation of disputed resources that confounded scholars until the 1980s
when mathematicians Robert Aumann and Michael Maschler solved the problem using
the tools of modern game theory. As it turns out, the solution given by the Talmud is
to split the disputed amount equally . Another example is when James Madison
considered the effects of different taxation systems with game theoretical concepts.
The list goes on, as conflict resolution and strategic decision-making have been
important issues throughout all of human history. The first work that brought about
game theory as a formal field of mathematics was Hungarian mathematician John von
Neumann’s paper The Theory of Games in 1928. This paper had three major results.
The first was reducing a game to the cases where each player knows either everything
or nothing about the other player’s previous moves. He also proved the mini-max
theorem for two person zero-sum games, and he analyzed three person zero-sum
games. Economist Oskar Morgenstern connected with von Neumann in 1938, and the
two then worked together on Theory of Games and Economic Behavior, published in
1944. This work was huge in the development of game theory. They expanded on von
Neumann’s previous work with an in-depth analysis of situations where players have
only partial knowledge of other players’ previous decisions, whereas The Theory of
Games made the assumption that players knew either everything or nothing about
previous decisions. They also expanded the definition of payoffs; previously payoffs
were generally considered to be only monetary, but von Neumann and Morgenstern
developed the theory of utility, which is still used today in many fields such as
economics. Since von Neumann and Morgenstern laid the foundation for game theory,
it has 15 been added to by many mathematicians, such as John Nash in the 1950s.
However, the main development over the following decades was increasingly
widespread application to many fields. While certainly important in the field of
economics, the use of game theory has expanded to extensive use in biology, and it is
also very important to the development of military strategy. Interestingly, the five
game theorists who have won the Nobel Prize for economics also worked as advisors
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to the Pentagon over the courses of their careers. Game theory has also been applied
in fields such as computer science and moral philosophy.

TYPES OF GAME

1) Non-cooperative versus Cooperative Games

There are two branches of the game theory, viz. cooperative and noncooperative
game theory. Under the cooperative game theory, groups or sub-sets of the players
make a binding agreement to reach an outcome that is best for the group as a whole
and is shared equally among the members. In contrast to this, under non-cooperative
game theory, players cannot write binding contract. Players are guided by self-interest,
each player acts as an individual who is normally assumed to maximize his own utility
without caring about the effects of his choice on other players in the game. The
outcome of the game, however, is jointly determined by the strategies chosen by all
players in the game. As a result, each player's welfare depends, in part, on the
decisions of other players in the game. An example of cooperative game is two firms
negotiating a joint investment to develop a new technology. An example of non-
cooperative game is two competing firms taking into account each other’s behavior
when setting their prices independently. Self-interested behavior does not always lead
to an outcome that is best for the players as a group. This we will come across when
we discuss different illustrations of the games. Non-cooperative game theory is more
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widely used by economist; nevertheless, cooperative game theory has been used to
model bargaining games and political processes.

Cinponases el ¢ b Non Cooperative
cl@3) | 04 |-
D (4,0 1.1

2)Perfect vs Imperfect Information

Games of imperfect information have information hidden from players during the
game. And, although games of perfect information have all information shown during
a game, the need for strategy in the game doesn’t necessarily differ between the two.

Perfect information games such as chess, backgammon, and go require a decent
amount of thought and strategy to play. Players have to process what they see on the
board and determine what their opponent is likely to do while working towards the
ultimate goal of winning. On the other hand, perfect information games such as candy
land, mousetrap, and tic-tac-toe don’t need practically any strategy to play. Players
simply have to roll a die or pick up a card and move their piece to a set space. Even a
game like tic-tac-toe, where there is arguably a strategy involved, has practically no
real thought put into the game.

Imperfect information games such as poker, 20 questions, and rummy require thought
and strategy to play. Players have to take into account the information that they have
been given already to try to figure out how they should act next in order to win.
Where imperfect information games such as guess who, apples to apples, and go-fish
don’t really require much strategy to play. Although there is arguably some strategy
to these games, the players don’t have to do much other than ask a question or seeing
a card and getting rid of some of your hand as a response.

A Game of imperfect information the dotted line represent ignorance or the part of player2 from called an
information set
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3)Simultaneous-move versus Sequential-move

Games
The order of moves is significant in the game theory. Players in a game may move

simultaneously or sequentially which in turn results in different outcomes of the game.
A simultaneous-move game is a game in which neither player knows the other’s action
when moving, that is, players take their action simultaneously without knowing the
action that have been chosen by the other player(s). For instance, in Cournot model of
oligopoly, each firm decides its profit maximizing levels of output simultaneously. In
contrast, in sequential-move games, the order of moves comes into picture. In this
case, one player moves first which is then observed by his opponent. The player(s)
who moves afterwards gets to observe and learn information about the course of the
game up to that point, including what actions other players have chosen. These
observations can then be used by that player to decide his (her) own optimal
strategies than simply choosing an action. This way, strategies of the players depend

on what the other player(s) before have done already.
Player II

rock paper scigsors

rock (0,0 (-1, 1) (1,-1)

Player I aner
= (1,-1) (0,0) (-1,1)

scissors

(-1,1) (L, -1 (0,0)

4) Zero-sum versus Non-Zero Sum Games

A zero-sum game is the one in which the gain of one player comes at the expense of
the other player and is exactly equal to the loss of the other player. In other words, the
sum of the payoffs of the two players always adds to zero. An economic application
can be the transaction between a buyer and a seller at the cost price. A non-zero sum
game is when gain or loss does not come at the expense of the other player. An
example of this might arise if increased advertisement leads to higher profits for both

the firms.
A B
Husband
Al -1,1 3, =3 Boxing Match |Ballet
_ Boxing Match 2,3 1,1
B| 0,0 -2,2 Wile et L1 3,2

The Battle of the Sexes is a simple example of a typical non-zero-sum game
A zero-sum game
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5)Syvymmetric vs Asymmetric Games

The main feature of symmetric game is that all the players in these games adopt the
same strategies. This is usually applicable in the short duration games because in the
long duration games the players get a more number of options. In symmetric games
the decisions do not depend upon the players, in fact, it is best on based on the types
of strategies used. The decisions in the symmetric games remain the same even if the
players are interchanged the game. The prisoner’s dilemma is the prominent example
of the symmetric games. This example is discussed further in this article. In the case of
asymmetric games, the decisions depend upon the player. In these games, if a
particular strategy provides benefit to one players, other players will also get equal
benefits. A prominent example of asymmetric games is the decision of the company to
enter the new market.

Player 2 Player 2
C D C D
C| 14,14 7,17 C| 44,36 | 8,44
Player 1 Player 1
D 157 10,10 D 52,0 32,28
(i) Symmetric payoff matrix (ii) Asymmetric payoff matrix
REPRESENTATION OF GAMES

The games studied in game theory are well-defined mathematical objects. The
games studied in game theory are well-defined mathematical objects.

Extensive form:-

The extensive form can be used to formalize games with a time sequencing of moves.
Extensive form games can be visualized using game trees (as pictured here). Here
each vertex (or node) represents a point of choice for a player. The player is specified
by a number listed by the vertex. The lines out of the vertex represent a possible
action for that player. The payoffs are specified at the bottom of the tree.
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The game pictured consists of two players. The way this particular game is structured
(i.e., with sequential decision making and perfect information), Player 1 "moves" first
by choosing either F or U (fair or unfair). Next in the sequence, Player 2, who has now
observed Player 1's move, can choose to play either A or R. Once Player 2 has made
their choice, the game is considered finished and each player gets their respective
payoff, represented in the image as two numbers, where the first number represents
Player 1's payoff, and the second number represents Player 2's payoff. Suppose
that Player 1 chooses U and then Player 2 chooses A: Player 1then gets a payoff of
"eight" (which in real-world terms can be interpreted in many ways, the simplest of
which is in terms of money but could mean things such as eight days of vacation or
eight countries conquered or even eight more opportunities to play the same game
against other players) and Player 2 gets a payoff of "two".

Normal Form:-

Player 2 Player 2
chooses L eff chooses Right

Flayer 1
’ 4 3 -1, =1
chooses Up
Flayer 1
j 0,0 3,04
chooses Down

MNormal form or payoff matrix of a 2-player, 2-sfrategy
game

The normal game is usually represented by a matrix which shows the players,
strategies, and payoffs (see the example to the right). More generally it can be
represented by any function that associates a payoff for each player with every
possible combination of actions. In the accompanying example there are two players;
one chooses the row and the other chooses the column. Each player has two
strategies, which are specified by the number of rows and the number of columns. The
payoffs are provided in the interior. The first number is the payoff received by the row
player (Player 1 in our example); the second is the payoff for the column player (Player
2 in our example). Suppose that Player 1 plays Up and that Player 2 plays Left. Then
Player 1 gets a payoff of 4, and Player 2 gets 3.

CALCULATION OF GAME THEORY

Game theory can be defined as the study of mathematical models of conflict and
cooperation between intelligent and rational decision makers .Game-theory concepts
apply in economy, sociology, biology, and health care, and whenever the actions of
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several agents (individuals, groups, or any combination of these) are interdependent.
We present a new command game to represent the extensive form (game tree) and
the strategic form (payoff matrix) of a non-cooperative game and to identify the
solution of a nonzero and zero-sum game through dominant and dominated
strategies, iterated elimination of dominated strategies, and Nash equilibrium in pure
and fully mixed strategies. Further, game can identify the solution of a zero-sum game
through max-min criterion and the solution of an extensive form game through
backward induction.

Strategic game:-

Whenever the strategy spaces of the players are discrete (and finite), the game
can be represented compactly as a matrix. In such a game, player 1 has R possible
actions, and player 2 has C possible actions; the payoff pairs to any strategy
combination can be neatly arranged in an RxC table; and the game is easily analyzable
(table 1). A payoff is a number, also called a utility, that reflects the desirability of an
outcome to a player, for whatever reason. We denote the set of strategies for player 1
and player 2 withS1=(1,2,...,r,...,R)andS2=(1,2,...,¢, ..., C). The numbers
of S1 and S2 may have labels. There are two elements (ulrc; u2rc) within each cell of
the table. The first subscript takes only two values (1, 2) and simply denotes player 1
or player 2. The subscripts r and c denote, respectively, the strategies played by player
1 and player 2. Thus ulrc is the payoff for player 1 when player 1 chooses strategy r
and player 2 chooses strategy c, whereas u2rc is the payoff for player 2 when player 1
chooses strategy r and player 2 chooses strategy c. Many methods are available to
seek the solution of the game. We start analyzing the game by collecting the maximum
payoffs and their related subscripts for each player given the choice of the other
player into lists of numbers.

Table 1: Notation for an R x €' payoff matrix

Sa

& | 2 " (i
(up1itieny)  (Mnizidegs) o (Mpeiteye)  ooo (Uneiume)

[ngd b=

121 - 3 ] Lyre Meass P Tlyas-= |'"|-. acaim Ly U : |
s Waay ) | Wyaa! Uags tpae-t Waae ) [ Myl Ty

[
-

(Urriitior)  (UWiezittaes) oo (Mieeiteee) Ll (U1red Uare)

R | (mipnzr ) (UMipeitegps) oo (MaigeiUare) .- (Mkcidzre)

Let’s define the maximum payoff MU1rc of player 1 if player 2 plays strategy c as the
highest value on the left side of column ¢ Formally,
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MUer = max {ull yU12cy vor vve ey Uqpe von s .ulRC} W|th c= 1, 2,...,C

Let’s define the maximum payoff MU2rc of player 2 if player 1 plays strategy r as the
highest value on the right side of the row r. Formally,

MU2rc = max {Uzr1, U2r2,...U2rc ...,U2rc } withr=1, 2,...,R

We create a list, SMU;, of C elements containing the subscripts r of all maximum
payoffs MU for player 1 and a list, SMU,, of R elements containing the subscripts ¢ of
all maximum payoffs MU, for player 2. Furthermore, we create a list, SU1, of
subscripts for all possible strategies of player 1 (1, 2, ..., R) and a list, SU;, of
subscripts for all possible strategies of player 2 (1, 2, ..., C). These lists of numbers are
useful for seeking the solution of a general R by C payoff matrix.

Nash’s equilibrium in pure and fully mixed strategies:-

Another way to find the solution of the game is through Nash’s equilibrium in pure
and fully mixed strategies. A Nash equilibrium, also called a strategic equilibrium, is a
list of strategies, one for each player, which has the property that no player has
incentive to deviate from his strategy and get a better payoff, given that the other
players do not deviate. A mixed strategy is a strategy generated at random according
to a particular probability distribution that determines the player’s decision. As a
special case, a mixed strategy can be a deterministic choice of one of the given pure
strategies. A Nash equilibrium in pure strategy specifies a strategy for each player in
such a way that each player’s strategy yields the player at least as high a payoff as any
other strategy of the player, given the strategies of the other player. Based on our
notation, we can say that Nash equilibriums in pure strategies are all pairs of strategies
for which MU1rc and MU2rc have the same pairs of subscripts r and c. In other words,
we proceed in two steps: first, we determine the best response; and second, we find
the strategy profiles where strategies are best responses to each other. See section 6
for a worked example. A Nash equilibrium in mixed strategy specifies a mixed strategy
for each player in such a way that each player’s mixed strategy yields the player at
least as high an expected payoff as any other mixed strategy, given the mixed
strategies of the other player. Fully mixed strategies mean that the probability
associated with each strategy cannot be equal to zero or one. The command game can
find Nash equilibrium in fully mixed strategies if R =2 and C = 2 (table 2)

Table 20 Pavolt matrix if each player has two strategies

gl s
[
-
-
[
i
=
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Player 1 would be willing to randomize between Si1=(1) and S1=(2) only if these
strategies gave him the same expected utility. More formally, we seek the probability
p so that both sides of (1) are equal.

pxum+(1-p)xuinz=pxu21+(1=pP) X U122 oo (1)
Thus player 2’s strategy in the equilibrium must be equal to
P % S2(1) + (1 - p) xS2(2)

To make player 1 willing to randomize between Si(1) and S1(2). S1(1) and S1(2) indicate
the strategies for player 1, while Sz(1) and S(2) indicate the strategies for player 2.
Similarly, player 2 would be willing to randomize between S, = (1) and S2=(2) only if
these strategies give him the same expected utility. Again we seek the probability q
such that both sides of (2) are equal.

gX U211+ (1=g) X U1 =g X U212+ (1 =) X U222 ceererereierr e, (2)

Thus player 1’s strategy in the equilibrium must be equal to

qx51(1) +(1-q) xS1(2)

to make player 2 willing to randomize between S2(1) and S2(2). The Nash equilibrium
in fully mixed strategies must be equal to (3).

{pxSa(1)+ (1 -p) xS2(2), % S1(1) + (L = q) X S1(2)} eveverrrieererie e (3)

We find the solution of (1) and (2) by using explicit formulas.

Solution of 2X2 Ractangular Games without a saddle point:-

Let us consider a 2X2 two — person Zero-sum game without any saddle point having

the following pay-off matrix for the row player A.

Player-B
B, B,
Ay (A1 Qg2
Player-A A, (Cl21 a22)

Since this pay-off matrix has no saddle point so, both A & B have to apply mixed
strategy.

Let P;, P, be the probabilities for selecting the strategies A; and A, respectively for
the player-A and g, g, be those for selecting the strategies B,and B, respectively for

the player- B.
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Then,p1+ p,=1=¢q, +q;
Now, for the player A, the expected gain for selecting the strategy Bi by the player B
is
a;1p1 + az1p2

and those for the strategy B; is

Aq2P1 + Az2D2

Now, for the player A,

a11p1 + a21p2 =V = a21a1 + azzpz ................................................ (||)
Similarly for the player-B, and optimal strategy, then,
a11q1 + a12q2 =7V = a21q1 + azzqz ................................................ (|||)

Form (ii) and (iii), we get,

D1 _ Q227031
D2 ai1—ai2

a1 az2—A21
And — = ———
az ai1—ai2

Now using (i), we get,

py = azz—031
L™ (ay1+az2)—(asp+azy)
p2=1—-p;

_ a11—Aa12
(a11tazz)—(az+azq)

And similarly,

_ az>—0A12
1= +agzy)—(az+
(a11tazz)—(az+azs)

@=1—q
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_ a11—Aazq
qz> = —
(a11tazz)—(az+azy)

In this case, the value of the game will be

V= aq41p1 + a1P2

_ aA11022—A12021
(ap1+azz)—(aiz+ azg)

For a game with 2X2 pay-off matrix with a saddle point, the value of v may not be
correctly obtained by using formula.

Graphical method of solution of 2Xn or mXx2 games :-

When the pay-off matrix of a two —person zero sum games of size 2Xn of mX2 when
in the game, one of the two players has only two pure strategies and also when the
game has no saddle point solution the graphical method is a very used full method for
solving such problems using this method any 2Xn or mX2 pay-off matrix can be
reduce to a 2X2 matrix and ultimately it can be solved by algebraic method.

Let us consider the following 2Xn pay-off matrix of a game without a saddle point:-

B, B, B; .. B,
Aq adij; Q12 A13 ... Qqn
A, A1 Ay A3 ... (dzn

Let a mixed strategy of the row-player A be given by (p,,p,) where, p; +p, =1,
p; = 0 and p, = 0. Now, for each of the pure strategies available to the column-
player-B, the expected pay-off for the player-A will as follows :

B’s Pure Strategies | A’s Expected pay-off E(p)

B, Ei(p) = ay1p1 + az1p2 = ag1py + a1 (1 —py)
= (a;; — az)p; + ax

B, E;(p) = (agz — azx)p, +ay;

---------------------------------------------------------

B, E,(p) = (a1, — azn)p1 + azq
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Now, it is obvious that B would like to select that pure strategy B; against A’s move for
which Ej(p) will be minimum, j = 1,2,...,n. Let us denote this minimum expected Pay —
off for A by

v = Min {Ej(p)},j =12,..,n

The player-A will try to select p1 and (hence) pz in such a way that v will be as large
as possible. This may be done by plotting the straight lines.

Ei(p) = (alj - azj)pl +azj,j =12, ... ,n
As linear functions of ps.
Again since, 0 < p; < 1,s0
Ej(p) = ayj,whenp; =0
= a,j,whenp; =1,
And hence, Ej(p) represents a line segment joining the points (0,az) and (1,a3).

To represent thus line segment graphical ,we first draw two parallel vertical line ,the
distance between then being one unit of length . The first one represent the line p1=0
and the second one represent the line p1 =1 . Now ,we draw the line segment joining
the point (0,az) and(1,a3) j=1,2,........... ,n .the lower bounded of these line will from a
lower envelops and will give the minimum expected pay-off for the row-player as a
function of p1. The highest point on this lower envelope will given maximum expected
pay off among the minimum expected pay-off of the row-player A and the optimal
value of his probabilities (p1,p2). In this way we may get two strategies for the column-
player B corresponding to the two lines passing thought the maximum point of the
lower envelops. This helps us to reduce the size of the pay-off matrix to 2X2 and which
ultimately can be solved by algebraic method.

Axis 1 (A) Axis 2 (A1)
i A7

5 By, — 5

maximin

Lower Envelope

0 0.5 1

LOWER ENVELOP
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The mX2 game can similarly be treated. In this case; we consider the lower point of
the upper envelope to get two strategies for the row — player-A and the optimal value
of the probabilities (q1,q2) of the column player-B.

P (minimax)

Upper envelope

n=0 x=1

2 L2

-3 253

4 -4
UPPER ENVELQP

APPLICATION OF GAME THEORY :-

Economic :- Game theory ,being concerned with the behavior of decision makers and
their interactions ,seems to have limited applicability in economics.

Price war

This is a similar outcome but for two firms that can keep prices high and stable or start
a price war. The best outcome for both firms is (a) $40, $40.

Firm B
Price War
Stable prices Price war
Stable prices $40, $40 (2) 50, $60 (b)

Firm A

Price war $60, $0 (c) $3,$3 (d)
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However, when prices are stable, if one firm cuts prices (starts price war) it will see
profits rise to $60. However, the other firm who keeps prices high will lose market
share and get zero profits. Therefore, the firm who loses out will almost certainly
retaliate and the outcome will move to (d) with both firms just making S3 profit.
Therefore, there is strong incentive to avoid price war.

e Co-ordination playoff

Firm A

Firm B
Co-ordination playoff
New technology No investment
AlESY Yeenmiology $200, $200 (a) $0, $30 (b)
No investment $30, $0 (¢) $50, $50 (d)

In this example, if neither firms invest, they will make $50 each. However, if they
both invest in new technology, which will become new market standard, they
will both get substantially better pay off (a) with $200 each.

However, if one firm invests in new technology and the other doesn’t, then they
will be left with SO (it is not widely shared). In this case, the firm will probably
start investing too, as they would be better off.

However, the key thing is whether one firm is willing to take the plunge and
make zero profits in the short-run. It may not be able to afford this outcome.
The issue with this game theory dilemma is that there are strong rewards from
co-operating. But, in the real world, for various reasons, co-operation may not
be there.

Matching pennies

Player B
Matching pennies
Heads Tails
Heads +1,-1 (a) 1, +1 (b)

Player A

Tails -1, +1 (c) +1,-1 (d)



Page - 16

« Thisis a game with two players. They both put a penny on the table.

. If the pennies are Heads/heads or tails/tails — then Player A wins both pennies.
He gains 1, (player B loses 1)

« If the pennies are mixed (heads/tails) or tails/heads then play B wins both
pennies.

« Thisis an example of a zero-sum game — the net benefit is always zero. For
everyone who gains, there is an equal and opposite loss.

Zero-sum game

Firm B

Enters market Leaves market

Enters market 1-1 3,-3

Firm A

Leaves market -2, 2 0,0

In this situation, we have another zero-sum game situation. If a firm enters or

leaves, there is always a net benefit of zero.

For firm A, its dominant strategy is to enter the market, because 1 is greater than -2.
For firm B, its dominant strategy is also to enter the market because -1 is greater

than -3. Firm B would prefer both firms to leave the market so it can get to zero. But,

in this model, it can’t do that because it know if A enters, it will have to enter or face

the costs of -3.

Tariff or trade war

Country B
'Trade
High Tariff Low Tariff
< High Tariff £lm-A | £2m-A
g £1m-B | £1.5m-B
=
= L N -
S £3m
£1.5m A £3m

Low Tariff £2m for B
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In this case, if both countries, pursue low tariffs, the outcome is £3m net welfare
for each country. If A places tariff, then its net welfare will be £2m, and country
B who keeps low tariffs will make £1.5m.

If B retaliates and places tariffs on too, it will make itself worse of — welfare falls
to £1m, but it will effectively punish A whose welfare falls from £2m to £1m.

If firms wish to maximize welfare, they would stick to low tariffs. That is their
dominant strategy and nash equilibrium.

However, in the real world, there may be political pressures (e.g. protect
domestic industry, even at expense of higher prices for consumers, which
encourages countries to place tariffs.

Prisoner’s dilemma

Suspect A

Suspect B
Prisoner’s dilemma |
- Do Not Confess Confess
Do Not Confess A =1year A= 0 years
B =1year B =20 years
A =20 years A =5 years
Confess B = 0 years B =5 years

The prisoner’s dilemma is a classic example of game theory.

There are two prisoners held in solitary confinement. They can either confess to
crime or stay silent (not confess)

If both stay silent, they both get light sentence of 1 year.

If they both confess, they get 5 years each.

However, if one confesses to the crime and betrays the other, then the one who
confesses is given immunity for giving information. But the other who remained
silent gets 20 years.

Therefore, a prisoner would only choose to remain silent, if they can guarantee
the other prisoner will remain silent.

The dominant strategy for both players is to confess. At worst they will get 5
years, at best they will get 0 years.

The Nash equilibrium is confess/confess (5 years each). Because if a player acted
unilaterally, it would be worse off.
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Decision Tree

Another way of describing game theory is through a decision tree.

Firm A (new firm)

Do not enter/ \Enter
0,3

Firm B (Incumbent)

Accommodate / \Fight — Cut prices

(1,1) (-4,-3)

« Inthis example, Firm A can choose to enter or leave. Firm B (the incumbent can
then decide to fight (cut prices) or accommodate.

« Ifit fights, both firms make a lost (-4, -3). Therefore the dominant strategy for
Firm B appears to be accommodate, leaving both firms with (1,1)

« However, firm B may make the calculation that it is worth making a temporary
loss, in order to try and force the new firm out of business. Also, if firm B fights,
it may deter other entrants.

Dominant strategy

A dominant strategy occurs when there is an optimal choice of strategy for each
player no matter what the other does.

P2

LEFT RIGHT
P1 UP 8,6 5,4
DOWN 75 2.4 )

« If P2 chooses left P1 will choose UP

« If P2 chooses right P1 will choose UP

o Therefore UP is a dominant strategy for P1

« P2 will always choose right no matter what P1 does

« The unique equilibrium is (up, left). This is best for both.
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A Nash equilibrium occurs when the payoff to player one is the best given the

other’s choice.

Hi

UP
DOWN

P2

LEFT RIGHT
6,6 4,7
7,4 55

Pareto outcome.

Evolutionary:-

in biology.

Hawk Dove

¢ Payoff matrix for hawk dove game

In this case If P1 chooses down, P2 will choose right

If P1 choose UP, P2 will choose right. But, if P2 choose right, P1 will want to
choose down.

The Nash equilibrium will be downright, (5,5) despite UP left being the optimal

Evolutionary Game theory is the application of Game theory to evolving population

Meets hawk Meets dove
If hawk V/2-C/2 \Y
If dove 0 V/2

Given that the resource is given the value V, the damage from losing a fight is given
cost C:-

If a hawk meets a dove, the hawk gets the full resource V

If a hawk meets a hawk, half the time they win, half the time they lose, so the
average outcome is then V/2 minus C/2

If a dove meets a hawk, the dove will back off and get nothing — 0

If a dove meets a dove, both share the resource and get V/2

The actual payoff, however, depends on the probability of meeting a hawk or dove,
which in turn is a representation of the percentage of hawks and doves in the
population when a particular contest takes place.
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Social Behaviour

+ =

Altruism Spite

Donor

Cooperation Selfishness

Games like hawk dove and war of attrition represent pure competition between

individuals and have no attendant social elements. Where social influences apply,
competitors have four possible alternatives for strategic interaction. This is shown on
the adjacent figure, where a plus sign represents a benefit and a minus sign represents
a cost.

In a cooperative or mutuality relationship both "donor" and "recipient" are almost
indistinguishable as both gain a benefit in the game by co-operating, i.e. the pair
are in a game-wise situation where both can gain by executing a certain strategy, or
alternatively both must act in concert because of some encompassing constraints
that effectively puts them "in the same boat".

In an altruistic relationship the donor, at a cost to them self provides a benefit to
the recipient. In the general case the recipient will have a kin relationship to the
donor and the donation is one-way. Behaviors where benefits are donated
alternatively (in both directions) at a cost, are often called "altruistic", but on
analysis such "altruism" can be seen to arise from optimized "selfish" strategies.
Spite is essentially a "reversed" form of altruism where an ally is aided by damaging
the ally's competitors. The general case is that the ally is kin related and the benefit
is an easier competitive environment for the ally. Note: George Price, one of the
early mathematical modelers of both altruism and spite, found this equivalence
particularly disturbing at an emotional level.

Selfishness is the base criteria of all strategic choice from a game theory
perspective — strategies not aimed at self-survival and self-replication are not long
for any game. Critically however, this situation is impacted by the fact that
competition is taking place on multiple levels —i.e. at a genetic, an individual and a
group level.
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Description and Modeling:-

The primary use of game theory is to describe and model how human populations
behave. Some scholars believe that by finding the equilibrium of games they can
predict how actual human populations will behave when confronted with situations
analogous to the game being studied. This particular view of game theory has been
criticized. It is argued that the assumptions made by game theorists are often violated
when applied to real-world situations. Game theorists usually assume players act
rationally, but in practice, human rationality and/or behavior often deviates from the
model of rationality as used in game theory. Game theorists respond by comparing
their assumptions to those used in physics. Thus while their assumptions do not
always hold, they can treat game theory as a reasonable scientific ideal akin to the
models used by physicists. However, empirical work has shown that in some classic
games, such as the centipede game, guess 2/3 of the average game, and the dictator
game, people regularly do not play Nash equilibrium. There is an ongoing debate
regarding the importance of these experiments and whether the analysis of the
experiments fully captures all aspects of the relevant situation.

Game Theory in Politics:-

Game theory is widely used in political affairs, which is focused on the areas of
international politics, war strategy, war bargaining, social choice theory, Strategic
voting, political economy etc. Game theory is an effective tool in the hands of
diplomats and politicians to analysis any situation of conflict between individuals,
companies, states, political parties. Rationality of actors and the choice of strategies
are one of the basic assumptions of game theory. Game theory seems to be useful tool
for research on terrorism because it captures the interaction between attacked subject
and terrorist organization, when the steps are interdependent and therefore cannot
be analyzed separately (Sandler and Arce M, 2003).

By using Prisoner’s dilemma, we will focus situation where governments choose
between active and reactive counter terrorism policies.

Let, There are two countries- Bangladesh and India. Both countries face common
threat of terrorist attacks, and both must agree on whether or not to jointly apply
active counter- terrorism policy.

Bangladesh

active reactive

aclive (4, 4) (-2, 6)
India

reactive (6, -2} (0, 0)
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We assumed that active policy for individual countries gains benefits of 6 and costs
of 8 for country that applied active policy. If the India is applying active policy and the
Bangladesh will be the state that will only get benefits associated with it, then
Bangladesh will have the advantages of the 6. India gets -2 (6-8). Cost of 8 shall be
deducted from the benefits of 6. Otherwise, if the India is a free-rider, the benefits
are reversed.

If both countries are active policy, then everyone gets the benefit of -4 (8- 2x6).

The result is prisoner’s dilemma game, in which no country wants to apply active
counter-terrorism policy.

Biology:-

In biology, game theory has been used as a model to understand many different
phenomena. It was first used to explain the evolution (and stability) of the
approximate 1:1 sex ratios. (Fisher 1930) suggested that the 1:1 sex ratios are a result
of evolutionary forces acting on individuals who could be seen as trying to maximize
their number of grandchildren.

Additionally, biologists have used evolutionary game theory and the ESS to explain the
emergence of animal communication. The analysis of signaling games and other
communication games has provided insight into the evolution of communication
among animals. For example, the mobbing behaviour of many species, in which a large
number of prey animals attack a larger predator, seems to be an example of
spontaneous emergent organization. Ants have also been shown to exhibit feed-
forward behavior akin to fashion.

.V‘f‘ u‘l}, ;
S e

American crows (Corvus hrachyrhyncios) mobbing The occurrence of mobbing behavior across widely different taxa,

a red-tailed hawk (Buteo jamaicensis) including California ground squirrels, is evidence of convergent evolution
Biologists have used the game of chicken to analyze fighting behavior and territoriality.

According to Maynard Smith, in the preface to Evolution and the Theory of Games,
"paradoxically, it has turned out that game theory is more readily applied to biology
than to the field of economic behavior for which it was originally designed".
Evolutionary game theory has been used to explain many seemingly incongruous
phenomena in nature.
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One such phenomenon is known as biological altruism. This is a situation in which
an organism appears to act in a way that benefits other organisms and is detrimental
to itself. This is distinct from traditional notions of altruism because such actions are
not conscious, but appear to be evolutionary adaptations to increase overall fitness.
Examples can be found in species ranging from vampire bats that regurgitate blood
they have obtained from a night's hunting and give it to group members who have
failed to feed, to worker bees that care for the queen bee for their entire lives and
never mate, to vervet monkey that warn group members of a predator's approach,
even when it endangers that individual's chance of survival. All of these actions
increase the overall fitness of a group, but occur at a cost to the individual.

Adult vervet monkey The co-operative hehaviour of social insects like the honey bee can be

explained by kin selection.

Evolutionary game theory explains this altruism with the idea of kin selection.
Altruists discriminate between the individuals they help and favor relatives. Hamilton's
rule explains the evolutionary rationale behind this selection with the equation c < b x
r, where the cost cto the altruist must be less than the benefit b to the recipient
multiplied by the coefficient of relatedness r. The more closely related two organisms
are causes the incidences of altruism to increase because they share many of the same
alleles. This means that the altruistic individual, by ensuring that the alleles of its close
relative are passed on through survival of its offspring, can forgo the option of having
offspring itself because the same number of alleles are passed on. For example,
helping a sibling (in diploid animals) has a coefficient of /5, because (on average) an
individual shares half of the alleles in its sibling's offspring. Ensuring that enough of a
sibling's offspring survive to adulthood precludes the necessity of the altruistic
individual producing offspring. The coefficient values depend heavily on the scope of
the playing field; for example if the choice of whom to favor includes all genetic living
things, not just all relatives, we assume the discrepancy between all humans only
accounts for approximately 1% of the diversity in the playing field, a coefficient that
was Y/ in the smaller field becomes 0.995. Similarly if it is considered that information
other than that of a genetic nature (e.g. epigenetic, religion, science, etc.) persisted
through time the playing field becomes larger still, and the discrepancies smaller.
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Philosophy:-

Game theory has been put to several uses in philosophy. Responding to two papers
by W.V.0. Quine (1960, 1967), Lewis (1969) used game theory to develop a
philosophical account of convention. In so doing, he provided the first analysis
of common knowledge and employed it in analyzing play in coordination games. In
addition, he first suggested that one can understand meaningin terms of signaling
games. This later suggestion has been pursued by several philosophers since
Lewis. Following Lewis (1969) game-theoretic account of conventions, Edna Ullmann-
Margalit (1977) and Bicchieri (2006) have developed theories of social norms that
define them as Nash equilibria that result from transforming a mixed-motive game
into a coordination game.

Game theory has also challenged philosophers to think in terms of
interactive epistemology: what it means for a collective to have common beliefs or
knowledge, and what are the consequences of this knowledge for the social outcomes
resulting from the interactions of agents. Philosophers who have worked in this area
include Bicchieri (1989, 1993), Skyrms (1990), and Stalnaker (1999).

In ethics, some (most notably David Gauthier, Gregory Kavka, and Jean Hampton)!
authors have attempted to pursue Thomas Hobbes' project of deriving morality from
self-interest. Since games like the prisoner's dilemma present an apparent conflict
between morality and self-interest, explaining why cooperation is required by self-
interest is an important component of this project. This general strategy is a
component of the general social contract view in political philosophy (for examples,
see Gauthier (1986) and Kavka (1986)).

Other authors have attempted to use evolutionary game theory in order to explain
the emergence of human attitudes about morality and corresponding animal
behaviors. These authors look at several games including the prisoner's dilemma, stag
hunt, and the Nash bargaining game as providing an explanation for the emergence of
attitudes about morality.

Rock paper scissors game theory:-

Nash Equilibrium is a pair of strategies in which each player’s strategy is a best
response to the other player’s strategy. In a game like Prisoner’s Dilemma, there is one
pure Nash Equilibrium where both players will choose to confess. However, the
players only have two choices: to confess or not to confess.

s

4
&
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What happens if there are more choices? For example, in the classic game of rock,
paper, and scissors, there are three choices. How can we find the Nash Equilibrium
then? And if we do, is it helpful? See the following article: In the above article, the
author discusses the application of Nash Equilibrium to games like Rock, Paper, and
Scissors. Recall from class that in game theory, games can have: (1) Only one pure
Nash Equilibrium (e.g. in Prisoner’s Dilemma) (2) Only one mixed Nash Equilibrium
and no pure Nash Equilibrium (e.g. Kicker/Goalie Penalty kicks) (3) Multiple pure
Nash Equilibrium (e.g. Hawk-Dove Game) (4) Pure and mixed (e.g. Hawk-Dove
Game) So which category does the game Rock, Paper, and Scissors fall under?

Scissors

According to the article, Rock, Paper, and Scissors fall under (2) — only one mixed
Nash Equilibrium. However, you can easily arrive at this conclusion by applying your
knowledge of game theory and Nash equilibrium — all topics we learned in INFO 2040.

Let p = player one and q = player two. (For the sake of simplicity, there will only
be two players) First, the reason why there isn’t a pure Nash Equilibrium is that there
is no way a player will 100% of the time choose one choice. For example, let’s take
player 1. If he consistently plays rock, then player 2 will always choose paper. Player
one will never win. Likewise, if player 2 always choose paper, player one will always
choose scissors. Player two will always lose. The two players will then fall into a cycle
of rock, then paper, then scissors. Thus, there is no equilibrium — it just doesn’t make
sense for one player to ALWAYS pick one choice for the whole game —it’s just too
predictable. Now let p(rock) be the probability that player 1 pick rock, p(scissors) be
the probability that player 1 pick scissors, and p(paper) be the probability that player 1
chooses paper. Likewise, g(rock), g(scissors), and g(paper) for player 2. We know that
none of these probabilities is fully a 1 (always choose).

The expected value for player 2 is:

EV[q(rock)] = 0*p(rock) + (-1)*p(paper) + 1* (p(scissors))
EV[q(paper)] = 1*p(rock) + 0*p(paper) + (-1)*(p(scissors))
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EV[qg(scissors)] = (- 1)*p(rock) + 1*p(paper) + 0*(p(scissors))

Also, p(rock) + p(paper) + p(scissors) =1

Using these equations, you will eventually reach that the Nash Equilibrium for
the game Rock, Paper, and Scissors is:

For player 1,

p(rock) = 1/3, p(paper) = 1/3, and p(scissors) = 1/3 and

similarly, For player 2,

q(rock) = 1/3, g(paper) = 1/3, and g(scissors) = 1/3

So that’s the Nash Equilibrium.

Rock Paper Scissors

0,0 |-2,2]|1,-1

Rock

2,-2100|-1,1

-1,1(1,-1( 0,0

Scissors Paper

But how useful is it? Why Nash Equilibrium may not apply to a game like Rock,
Paper, and Scissors There is another major difference between a game like Prisoner’s
Dilemma and Rock, Paper, and Scissors (besides the number of choices) and that is:
The players will play again and again. In Prisoner’s Dilemma, they play one round and
so they must pick the dominant strategy in that game, but in Rock, Paper, and Scissors,
the two players repeatedly play. The article states that in such a case, it’s best for the
players to stick to about 1/3 for rock, paper, or scissors throughout the game.
However, is that really the best? See the following article: In this article, a large
amount of people repeatedly play rock, paper, and scissors against each other and the
results are: “Upon review of the results, Wang did find numbers that backed up the
Nash Equilibrium theory coming into play. He also found the above-mentioned
pattern: winners were the players who stayed loyal to their strategy and losers were
the players who switched. In game theory, this is called “conditional response.” In fact,
the conditional strategy proved to be 10 percent more reliable for winning than did
the Nash Equilibrium.” From this, you should definitely be more cautious in using the
Nash Equilibrium. Of course, we did find the Nash Equilibrium for Rock, Paper, and
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Scissors but we cannot say that will be the best strategy. In fact, often times it’s not (as
we have found out in class). Thus, as shown in class and here, we can find the Nash
Equilibrium in cases where there are more than two choices but we also need to be
careful when applying it — even if it’s a game as simple as Rock, Paper, and Scissors.
Side Notes: (1) | recommend readers to look up “conditional response” (2) For the
game Prisoner’s Dilemma, a tournament was held where players repeatedly play
Prisoner’s Dilemma and one strategy that did well was called “tit for tat.” See:
dilemma Comments Download PDF Abstract: Rock-Paper-Scissors (RPS), a game of
cyclic dominance, is not merely a popular children's game but also a basic model
system for studying decision-making in non-cooperative strategic interactions. Aimed
at students of physics with no background in game theory, this paper introduces the
concepts of Nash equilibrium and evolutionarily stable strategy, and reviews some
recent theoretical and empirical efforts on the non-equilibrium properties of the
iterated RPS, including collective cycling, conditional response patterns, and
microscopic mechanisms that facilitate cooperation. We also introduce several
dynamical processes to illustrate the applications of RPS as a simplified model of
species competition in ecological systems and price cycling in economic markets.
From: Hai-Jun Zhou [view email] [v1] Thu, 14 Mar 2019 13:40:11 UTC (220 KB) Want
more? Advanced embedding details, examples, and help! . ."All will be well if you use
your mind for your decisions, and mind only your decisions." Since 2007, | have
devoted my life to sharing the joy of game theory and mathematics. Mind Your
Decisions now has over 1,000 free articles with no ads thanks to community support!
Help out and get early access to posts with a pledge on Patron. One of the most
common questions | get is, “Can you recommend an introductory book on game
theory-a book without a lot of math?”When | first got this question, | was hard pressed
to find an answer. Game theory is a mathematical science, and many presentations
can be intimidating. For example, many journals and textbooks are so complicated
that it takes a mastery of Bayesian probability, set theory, and real analysis just to
understand the problems! This is a tragedy, for a subject as interesting as game theory
should be made accessible. So over the last few years | have kept a special eye out for
books aimed at general audiences. And | am glad to say there are a few good books on
game theory. | have listed the books | have especially enjoyed in a separate blog page
about recommended books.

You Opponent

-
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And to do them justice, | plan to write full reviews on each of my favorites so
you get a better idea of them. Today | will discuss Rock, Paper, Scissors: Game Theory
in Everyday Life by Len Fisher. What the book is about there are two quotes in the
“praise” section that nicely summarize the book:“Why be nice? In answering this
simple question, Len Fisher takes us on a wry, fascinating tour of one of the most
momentous sciences of our time. You couldn’t ask for a better guide to all the games
we play.” =William Poundstone, author of Gaming the Vote and Fortune’s Formula
“Rock, Paper, Scissors is a refreshingly informal as well as insightful account of key
ideas in game theory. Len Fisher gives many examples, several from his own life, of
games that post harrowing choices for their players. He shows how game theory not
only illuminates the consequences of these choices but also may help the players
extricate themselves from situations likely to cause anger or grief.” —Steven J. Brams,
New York University, author of Mathematics and Democracy My one sentence
summary is: Rock, Paper, Scissors is a popular science book that connects game theory
to everyday situations and suggests several strategies for achieving cooperation.(As
you can tell, this book is a different style from other books | like such a Thinking
Strategically or The Art of Strategy. This book is a lighter read and connects more to
anecdotes and science.)Book highlights will warn you that the book starts off a little bit
slowly. The first chapter “trapped in a matrix” mainly describes the Prisoner’s dilemma
and gives the negative connotation that the Nash equilibrium is a logical trap. The
matrix graphics are not that illuminating either. Luckily, these setbacks didn’t stop me
from reading the rest of the book which is full of interesting examples and
explanations. The second chapter “I cut and you choose” is where the book picks up.
This chapter offers a nice introduction to the concepts of mini-max and fair division.
Fisher illuminates fair division with anecdotes like how he got in trouble as a kid
shooting fireworks, and as a consequence had to yield fireworks with his brother. The
answer he intuitively arrived to as a kid was what he know realizes was an application
of the mini-max principle. | was also impressed that Fisher discusses the principle of
equal division of the contested sum, which | have discussed twice before (regarding
religion and homeowner fees).Chapter three is about seven of the most interesting
game theory problems, which Fisher aptly dubs “the seven deadly dilemmas.” Here
Fisher offers a great summary of such problems as the free rider issue and the game of
chicken. Chapter four is a humorous one, and is about the game “rock, paper,
scissors.” It was new to me that rock, paper, scissors is in fact played in most of the
world (though under various other names). | was also amused at how rock, paper,
scissors can be used in conflict resolution. The reason is that the game has no pure
strategy that dominates the others. Hence situations and games which seem to be at a
standstill (say too many free-riders in overfishing) can be solved by adding strategies
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and converting them to rock-paper-scissors situations. Chapters five through eight are
all about cooperation: how we can achieve trust, bargain effectively, and change the
game to avoid the “trap” of the Prisoner’s dilemma and other undesirable outcomes. |
won'’t go into detail, as the main fun points are similar in nature to the other chapters:
the narratives and interesting examples from science. Read the end notes! One of the
best parts of this book is the “Notes” section at the end. This is a substantial part of
the book and it is full of narratives, jokes, and random trivia.

The end notes are over 50 pages long-and this is for a book that is about 250
pages in total! | am still following up on many of the references and this alone has
been worth the read. Final thoughts hope this review gives you a better idea of the
book. It is a great introductory read and a good addition for real-life examples of game
theory. Check it out:*| also owe a special thanks to the book publisher for providing a
review copy If you purchase through these links, | may be compensated for purchases
made on Amazon. As an Amazon Associate | earn from qualifying purchases. The
puzzles topics include the mathematical subjects including geometry, probability, logic,
and game theory. Math Puzzles Volume 1 features classic brain teasers and riddles
with complete solutions for problems in counting, geometry, probability, and game
theory. Volume 1 is rated 4.4/5 stars on 112 reviews. Math Puzzles Volume 2 is a
sequel book with more great problems. (rated 4.2/5 stars on 33 reviews)Math Puzzles
Volume 3 is the third in the series. (rated 4.2/5 stars on 29 reviews)KINDLE UNLIMITED
Teachers and students around the world often email me about the books. Since
education can have such a huge impact, | try to make the eBooks’ available as widely
as possible at as low a price as possible. Currently you can read most of my eBooks’
through Amazon's "Kindle Unlimited" program. Included in the subscription you will
get access to millions of eBooks’. You don't need a Kindle device: you can install the
Kindle app on any Smartphone/tablet/computer/etc. | have compiled links to
programs in some countries below. Please check your local Amazon website for
availability and program terms. US, list of my books (US) UK, list of my books (UK)
Canada, book results (CA) Germany, list of my books (DE) France, list of my books (FR)
India, list of my books (IN) Australia, book results (AU) Italy, list of my books (IT) Spain,
list of my books (ES) Japan, list of my books (JP) Brazil, book results (BR) Mexico, book
results (MX) MERCHANDISE Grab a mug, t-shirt, and more at the official site for
merchandise: Mind Your Decisions at Tee spring.
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LIMITATIONS OF GAME THEORY

The biggest issue with game theory is that, like most other economic models, it
relies on the assumption that people are rational actors that are self-interested and
utility-maximizing. Of course, we are social beings who do cooperate often at our own
expense. Game theory cannot account for the fact that in some situations we may fall
into a Nash equilibrium, and other times not, depending on the social context and
who the players are.

In addition, game theory often struggles to factor in human elements such as
loyalty, honesty, or empathy. Though statistical and mathematical computations can
dictate what a best course of action should be, humans may not take this course due
to incalculable and complex scenarios of self-sacrifice or manipulation. Game theory
may analyze a set of behaviors but it can not truly forecast the human element.

CONCLUSION

i) Game theory is exciting because although the principle are simple, the application
are for reaching.

ii) Game theory is the study of cooperative and non cooperative approaches to games
and social situations in which participants must choose between individual benefits
and collective benefits.

iii) Game theory can be used to design credible commitments threats or promises and
statements offered by others.

iv) Game theory is a powerful theoretical tool for understanding cooperation and the
conditions under which it can occur.

v) Game theory, however, makes an assumption, in the context of cooperation, that
can limit its application: Players are disembodied.

vi) By using agent-based models, we can investigate embodied agents and discover
that in many cases, stable game-theoretic solutions depend on embodiment and
context.
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The Cantor Set as a Fractal and its Artistic
Applications

Abstract

The Cantor middle-thirds set is an interesting set that possesses various, sometimes
surprising math- ematical properties. It can be presented through ternary representation and
obtained through an iterative process. This paper will discuss selected topological
properties of the Cantor set, as well as its connection to fractal geometry. It will then discuss
the existence of the Cantor set in a variety of artistic contexts.

Introduction

Georg Cantor (1845-1918) was a German mathematician and the creator of transfinite set
theory (Dauben 1). Cantor's work was often regarded as controversial, partially because of
the use of infinity in his mathematics (Dauben 1). He was also the first to publish the
traditional middle-thirds set, which we refer to as the Cantor set. Though the Cantor set was
an abstract concept at the time of its publication in 1883, Cantor explored many of its deep
mathematical qualities. The Cantor set is a fractal and can be achieved through use of
dynamical systems. The problem of the dynamics of iteration and fractals was briefly
explored in the early 19th century, but it was not until the use of computers that it was
developed in more depth (Mandelbrot 23). Here, we will discuss some of the topological
properties of the Cantor set. We will consider the Cantor set as both a one-dimensional and
two-dimensional dynamical system. Lastly, we will discuss the Cantor set as a fractal.

Benoit Mandelbrot developed fractal geometry in the 1970's. He referred to his math as a
new "geometric language" (Mandelbrot 21). People were slow to accept the new
mathematical concept of fractals, but eventually Mandelbrot published a paper about his
findings (Mandelbrot 22). Mandelbrot considered fractals to be artistic objects. Here, we will
discuss the connection between the Cantor set fractal and art. We can find resemblance to
fractals, particularly the Cantor set, in many artistic contexts. We will focus on its presence
in architecture and Chinese art. These connections to art make a fascinating topic in
mathematics applicable in a non-scientific context.

The Cantor Middle-Thirds Set

The traditional Cantor middle-thirds set is constructed through an iterative process.
Beginning with

the closed set [0, 1], the open middle third (1/3, 2/3) is removed. Two closed sets remain.
The middlethird is then removed from each of these sets, namely the intervals (1/9, 2/9)




and (7/9, 8/9) repeated infinitely many times, and the set that remains is the Cantor middle-
thirds set. More formally,consider the sets /Ip/7,/2...,where

lo=1=[0,1]
I =I\(1/3,2/3)

I2=1\ (179, 2/9) U (7/9,8/9)...

x

We define the Cantor set to be C =+-0 I, or the intersection of h, /7,/2.we can illustrate C by
depicting each iteration of removing middle-thirds on a separate line (Figure 1).

e Wi - n (1IN

Figure 1: Typical representation of the Cantor Set, Tex Stack Exchange.

After the first iteration, the Cantor set consists of two disjoint intervals of length 1/3. After
the second iteration, the Cantor set consists of 4 disjoint intervals of length 1/9. At the kth
iteration, the Cantor set consists of 2¥ intervals of length 1/3%.

Proof. Proceeding by induction, we consider k= [0, 1]:

1_1_1
30 1

At this iteration, Chas 2°= 1 interval. Now, assume that the set k has 2 disjoint intervals of
length

1/3%. If we remove the middle third from an interval, each subinterval will be one-third the
length of

the original interval:
1 1 1

3k 3 3k
Also, the 2¥ intervals are all split into two intervals :
2k .2 = oht!

By induction, / consists of 2* disjoint intervals of length 1/3".We have described the classic
middle-thirds Cantor set. However, note that any set that is constructed by an iterative
process of removal of some constant portion of the set can be considered a Cantor set.




Topological Properties

Ternary Representation
The Cantor middle-thirds set can be expressed through ternary representations. Recall that a
geometric

ad=14+a+a*+d.. 1 Zﬁ
Series i=o converges absolutely to 12 if |a|<1 consider the series =3 .
S
Suppose that each siis either 0; 1 or 2. Then the series = 3 is dominated by the convergent
geometric

>3 >3 >

S;
Series =73 . Thus, by the Comparison Test, i=1 3i converges and 0 = =1 %<1,

| &

w

Ternary Expansion

Si

1 2%, where each siis either

hgE

We call 0:s:s:Ss... the ternary expansion of x if x =
0;1or2.
We claim that every x 2 [0; 1] has a ternary expansion. Let s1be the largest among 0; 1; 2 for which

S1 So
. . -=>= . .
s. Then, pick the largest s2 for which ¥ 3 = 32 Proceed inductively to get the largest sn for
n—1 n—1 e :
- ok Sl ey
which =3 3" Thennotethat ‘=3~ 3" and so, we see that the infinite series =1 “iwill

converge to x.

We claim that each point x of the Cantor set can be represented as a ternary expansion
0.s1s2s3... where each siis 0 or 2. If x has a ternary expansion for which some si = 1, then x
lies in a middle third interval that has been removed. This is because x would be past the left
third interval, but it would not yet reach the right third interval. For example, if s1=1, x #1/3
will be greater than 1/3=.1, but it will not yet reach 2/3=.2, placing it in a middle third. This
idea can be applied to any si. Thus, no Cantor set element ternary expansion contains a 1,
excluding the endpoints, which may have a 1 as the right-most digit of their ternary
expansion. In this case, x has an alternative expansion that contains no 1's. For example, the
ternary representation for 1/3 is .1 and is equivalent to the representation .0222....So, we can
consider the Cantor set to be the set of real numbers in the unit interval [0, 1] with ternary
Orepresentations containing only 0’s and 2’s.

Similarly, we can represent any x in [0, 1] by a binary expansion ; % consisting of 0's and 1's.
We will

use this expansion in the next section.
Uncountable

When we consider the construction of the Cantor set, it seems like we “throw out” most
points of the unit interval. Intuitively, we would think that C should be a small set. The fact
that the Cantor set is actually uncountable is one of the surprising topological properties of
the set. We will prove this here:

Proof. If x is in the Cantor set, it has a unique ternary expansion using only 0’s and 2’s. By
changing
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every 2 in the expansion of x to a 1, the ternary expansions of the Cantor set can be mapped
to binary expansions, which have a one-to-one correspondence with the unit interval. This
can also be done in the opposite direction to map binary expansions to ternary expansions.
The only exceptions to this correspondence are the binary expansions ending in infinitely
many 0’s or 1's and the ternary expansions ending in infinitely many Q’s or 2's. However,
these exceptions are countable because there are finitely many ways to begin a binary
representation before ending in an infinite string of 0’s or 1’s, and there are finitely many
ways to begin a ternary representation before ending in an infinite string of 0’s or 2's. Thus,
there is a one-to-one correspondence between the binary and ternary exceptions. Since each
real number in [0, 1] can be represented as a binary expansion, the Cantor set has a one-to-
one correspondence with the unit interval. Now, [0, 1] is uncountable, and so the Cantor set
is uncountable.

Closed, Perfect, and Compact

Here, we will discuss why the Cantor set is closed, perfect, and compact. By construction,
each kis

closed because it is the complement of an open set. Thus, ﬂ kis closed because the intersection of
closed sets is also closed. Therefore, the Cantor set is a closed set. We will now see that the Cantor
set

is perfect.

Isolated Point point x in set S is an isolated point if €-ball B(x,€) surrounding x does not contain
another pointin S.

Perfect Set S is perfect if it contains no isolated points.

We claim that the Cantor set is perfect.

Proof. Consider x € C. For any €, we have the open ball B(x,€). We can choose k so that 3x < Let k
be the union of 2“disjoint intervals of length 1/3% Then, x € k. Let x be in subinterval s € k, and then s _
B(x,€). In the k + 1 iteration, s is split into subintervals a and b. Let x be in a. By self-similarity, we know
that there must be points of C in b. Thus, there are points of C in B(x€) not equal to x, and x is not an
isolated point. Therefore, no point in Cis an isolated point, and C is perfect.

Now, recall that the unit interval [0; 1] is closed and bounded. Thus, it is compact by the Heine-Borel
Theorem (Ross 90). We see that the Cantor set is compact because every closed subset of a
compact

space is compact (Willard 119). We have now shown that the Cantor set is closed, perfect, and
compact.

Totally Disconnected
We also can prove that the Cantor set is totally disconnected.

Totally Disconnected A set is totally disconnected if it contains no subintervals.

This is another non-intuitive property of the Cantor set. We have already proved that C is perfect, or
has no isolated points. We would then expect the Cantor set to contain subintervals. Here, we will
prove

this to be false.

Proof. Consider a; b € C. Recall that k consists of finitely many disjoint intervals of length 1/3k. We
1

can find k where 3¢ =
belong
to different subintervals of k. By the construction of k, there must be an interval in (a,b) that is not

b= a'. So, if the distance between a and b is more than 1/3k, a and b must
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in lk. Thus, there exists z =2 Ik with a < z < b. Therefore, k does not contain (a; b). Since ‘ UOUI”
C does not contain any interval (a, b). Thus, C is totally disconnected.

Each of the previously discussed topological properties relate to an important theorem (Willard 217):
the Cantor set is the only totally disconnected, perfect, compact metric space (up to
homeomorphism).

This is an interesting theorem that requires more complicated topology than we have discussed, so
we

will not prove it here.

Homeoporphism.

Defenition A homeomorphism is a continuous bijection between topological
spaces that has a continuous inverse [3]. Homeomorphism is an important concept
in topology, since it expresses a notion of topological equivalence. Thus, two sets
which are homeomorphic share many topological properties.

Theorem All Cantor sets are homeomorphic to each other.

Proof. Given two Cantor sets C and C' on the unit interval, suppose they are
constructed by the intersection of C,,C;,C.... and C’0,C'1,C~2... let fo be the linear

map bijection from Coto C, both of which are entire intervals, sending endpoint
to endpoint. fu(x) is continuous within its domain. Similarly, as shown in figure 3,
let f. be the combination of linear map from the left interval of C, to left interval

C+, and likewise for the right intervals..., and let f. analogue for the kth sets. All

these maps are continuous, because they are continuous on disjoint closed intervals.
Figure 3.
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Now, define g« as the restriction of f.that maps only C to Ck. Since the domain
Cis a subset of all C.for k € N, we derive that g«is continuous for all k > N. We
want to show that these g« converge uniformly to some map g. The range of g will
have to be the intersection of all C«, so C-.

Denote Mk as the one among 2k intervals of Ck with the maximum length.

Since the Cantor sets are always nowhere dense, we deduce thagJim« oMk = 0.
Specifically, if the value of lingg Mk = 0 is positive, then a subset of the Cantor
set contains at least one interval, contradicting that its closure has empty interior.
Now denote Nk as the supremum of | gk- gm | on the entire unit interval for any

m > k. Therefore, given €> 0, there always exists K such that for all k > K,

| gk-gm | < Nk< Mk< € for all x 2 C and m > k. The sequence is Cauchy in the
uniform norm, so it uniformly converges to the desired function g.

We have successfully shown that gn converge uniformly to g. g is, therefore,

a continuous map from C to C'. By the same token, we are able to construct a
continuous map from C'to C by simply reversing the positions of C and C'and
keeping all other aspects of our argument the same.
As aresult, in order for there to be a continuous bijection between C and C,
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we only need to prove that the map from C to C'is bijective. In fact, each element

in C and C'can be considered as an infinite sequence of L and R, where L stands

for choosing the left interval and R stands for choosing the right interval in a given
iteration. A bijective map between a point in C and one in C'can be established if
they have identical L/R sequences, but it is easy to see that gk gives these identical
sequences for the first k L/R choices, so g itself gives the desired mapping for all of
the infinitely many L/R choices.

Therefore, we have proven that Cantor sets C and C'are homeomorphic to each
other. Since C and C'can be any arbitrary Cantor sets, we deduce that all the

Cantor sets are homeomorphic to each other.

Cantor Set as a Dynamical System

We have discussed the traditional construction of the Cantor set and some of its topological
properties.

We can also reach the Cantor set through the use of dynamical systems. We will explore two di_erent
ways this can be achieved.

lterated Function System
The Cantor set can be produced by the iteration of a function system.

Consider the two linear functions (Devaney, 192) frora-RZp R*

;) =3(;)
a(5)=3(7,")+ (0)

We claim that if x is an element of the Cantor set, then this iterated function system will send the
point

(x, y) to another point of the form (c, y1) where c is in the Cantor set. In other words, this system fixes
the Cantor set. Recall that the Cantor set consists of all points in the interval [0,1] with ternary
expansions containing only 0's and 2's. We see that A, shrinks the x-coordinate by 1/3, and its
corresponding

ternary representation by .1. For example, consider x = :0022022 € C. A, would shrink x by .1 to
.00022022. This ternary representation consists of only 0's and 2's, so it is still contained in the
Cantor

set. A1 shrinks the x-coordinate by 1/3 and shifts it by 2/3, or by its ternary representation of :2. For
example, A1 would shift x =.0022022 to .20022022. This ternary representation also consists of only
0's and 2's, so it is still contained in the Cantor set. So, we see that the system of equations Ao, A1
takes points of the Cantor set back into the Cantor set. These functions, no matter the order they are
performed, leave the Cantor set fixed.

The Cantor set is called the attractor of this iterated function system. This means that any point in the
plane with any y-coordinate will eventually be “pulled into" the Cantor set when this function system is
applied. That is, after enough iterations, every point in the plane will converge to a point (c,0) where ¢
is in the Cantor set. To see this, we consider any number of iterations of Aoand A1in a random order.
We can represent this random sequence of choice of Aoor A1by a sequence (s1s2s3...sn) where each s;
is either 0 or 2 representing the application of Aoand A1 respectively. Now let x € R, and let xn be the

result of the applied sequence of Aoand A1. We see that:
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When we take the limit of xnas-ap 00, we see that the _rst term x/3*approaches 0. The remainder
of

- s
this expression is of the form = 3 with each s.equal to 0 or 2, which we know means it is an
element
of the Cantor set. The y-coordinate will be sent to 0. Thus, we see that any point in the plane will
converge to a point (c; 0), where c is in the Cantor set, after enough iterations of Acand A1in a random
order.

Iterated Tent Function

We can also produce the Cantor set by a different dynamical system. To illustrate this, we consider
the

Tent Function:

if < 1/2
=43 rE
3—3x ifx>1/2

We claim that by iterating this function, the points that are not sent to infinity are exactly the Cantor
set.

If x < 0, then T(x) < 0. At the next iteration of the Tent Function, T%(x) = 9x < T(x). At the third
iteration, T3(x) = 27x < T2(x). We see that aspw  oo;F” -0 forx < 0.

P gieps. fesoenlEalelde 00 Uhn fAir BOE R pen X ONgENRe
-0.4 -0z~ b 0.2 0.4 0.6 0.8 1b\

Figure 2: Tent Function, map of pointx <0

Graphically, we trace a point from the tent map to the line y = x. We begin with a graph of the tent
function and the function y = x. At an x value outside of our interval [0, 1], we map from y = x to the
tent function. At that y value, we map back to y = x. Then, from that x value, we map back to the
tent function. By repeating this process, we see that the point we have been mapping goes to
negative

infinity. Figure 2 depicts this process for x < 0.
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Figure 3: Tent Function, map of point x > 1

If we choose x > 1, after the first iteration T(x) < 0. Recall that-gp-n 0o, T(X) -0o for x < 0.
Therefore, for x > 1, x is sent to -00, as depicted in Figure 3. Thus, we find that for x ¢ [0,1], x is sent
to negative infinity by iterating the Tent Function.

Figure 4: Tent Function, map of point % <X< %

By this same process, we also see that if x € (%,%), then x is sent to infinity (Figure 4). For example,

T(1/2)=3/2. We saw above that this is eventually sent to -co because x > 1.

In fact, any point in a middle third will be sent to -co. For example, if x € (%,%) thenitis sent to

(%é) in one iteration of the Tent Function, which we discussed above. This is supported algebraically:

if 1/9 < 2/9 then 1/3 < T(x) = 3x <2/3. This is true for any x in a middle third interval.
Any point that is in the Cantor set, with the exception of the endpoints, will be sent back to itself after
enough iterations of the Tent Function. We will not provide a formal argument for this, but we will

explore an example. Consider 3/13, which is not an endpoint. Now, we will see that 3/13 is sent back
to itself after three iterations of the Tent Function:

TG =363 =33
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203\ _aa 9y _12
T 13)'33(13 1
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T 13)'3 3(13)'13

The ternary representation of 3/13 is :02002...., which confirms that it is in the Cantor set.

We also see that at the x values 0 and 3/4, there is no line to be mapped graphically. These points are
where the tent function and x = y intersect, and are called fixed points. This is supported algebraically:
3(0)=0

3,_3
3301

If we consider the endpoints of the Cantor set intervals, we find that they eventually are attracted to
the fixed point 0. These are called eventual fixed points. For example, endpoint 1=3 is attracted to the
fixed point 0 after the second iteration of the Tent Function:

1y 251} 2
T(3) = 3(3) =1
We will now prove that each endpoint is an eventual fixed point and is sent to O:
Proof. All endpoints of the Cantor set are of the form }"

3k because they must be rational. Recall that
the endpoints can contain a 1 in the right-most digit place, but these can be rewritten in terms of 2's.
That is, sn=1 is possible if x is an endpoint. If s1= 0 then T(x) = 3x. This shifts the left-most ternary
digit left by 1. If s1=2, then T(x) = 3-3x = 3-2.5:8:...8, = 3-(2+.5253...8n) = 1-.5283...5n. We
see that T(1 - .s:8s...Sn) = T(.S2Ss...5n) because T(x) is symmetrical about the line x = 1/2. We can
repeat this process until we reach s.. If s,= 0 or 2, then we repeat one last time, and we reach 0. If
s.= 1, we apply T(x) again and reach 1, which is sent to 0 by another iteration of T(x). Thus, We see
that the endpoints are eventually sent to the fixed point 0.
Here, we see an example of this process. Consider the endpoint 7/9=.21.

3(.21) = 2:1
T(.21)=3-2:1
T(1-1)=T(1)
T(1)=3-3(1)=0
We see that the endpoints are eventually sent to the fixed point 0. The endpoints are not sent to
infinity, which means they are part of the Cantor set. This correlates with our analysis of their ternary
representations in Section 2.1.
Iterating the Tent Function sends all points of C back to themselves or to a fixed point. Thus, we see
that iterating the Tent Function fixes exactly the Cantor set.

=3-Q2+.1)=1-1
]

The Cantor Set is a Fractal

The classic Cantor middle-thirds set is a mathematical object called a fractal.

Fractal A fractal is a subset of Rnthat exhibits self-similarity on all scales and has fractal dimension.
A fractal does not necessarily have topological dimension.

Informally, self-similarity means that we can apply a rescaling function to the set and the image of the
set will look the same. Benoit Mandelbrot provided an informal definition of a fractal: \Fractals are
geometric shapes that are equally complex in their details as in their overall form. That is, if a piece

of a fractal is suitably magnfied to become of the same size as the wholeg, it should look like the
whole,

either exactly, or perhaps only after a slight limited deformation" (Mandelbrot 22). We can see that the
Cantor set is self-similar by examining C at a different scale. Recall that |1 consists of two intervals of
length 1=3. If we magnify one of these subintervals by 3 and continue the process of removing the
middle

third, we see that we have an exact copy of the full-scale Cantor set.

3.4 Fractal Dimension

We will now discuss the difference between fractal and topological dimension. The type of dimension
that
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we are most familiar with is topological dimension. A point is of dimension 0, a line is one-
dimensional,

a square is two-dimensional, and a cube is three-dimensional. Logically, we understand these
dimensions

as the number of “linearly independent" directions we can move along an object (Devaney 185). For
example, we can move along the length and width of a square, so we understand it to be two-
dimensional.

We define topological dimension here:

Topological Dimension k
An open set S has topological dimension k if each point in S has an arbitrarily small neighborhood
homeomorphic to R (Devaney 186).

For example, an open square has topological dimension 2 because the points in a square have
arbitrarily

small neighborhoods that are two-dimensional.

Notice this applies when k = 0. In that case, every point in the set has a neighborhood that is homeo-
morphic to a zero-dimensional object, such as a point. For example, a discrete set has dimension 0.

It remains to show that the Cantor set has fractal dimension. Finding the dimension of the Cantor set
is more complicated then finding the dimension of simpler objects. We proved that C contains no
subintervals. This implies that the Cantor set contains no point with a neighborhood that is
homeomorphic

to R'. Thus, the Cantor set is not one-dimensional. However, Cis also perfect and contains no isolated
points, so it does not have dimension 0. Therefore, the Cantor set has dimension in between 0 and 1.
We can think of the Cantor set as somewhere in the middle of unconnected isolated points and
pieces of

straight lines (Peak, Frame 92). At every scale, C appears to be linear stretches, though we know that
each of these stretches is broken up at the next iteration (Peak, Frame 92). To consider the dimension
of the Cantor set, we must define a new type of dimension: fractal dimension. First, we must note that
only sets that are affinely self-similar have a well-defined fractal dimension (Devaney 186).

Affine Self-similar
A set Sis called affine self-similar if Scan be subdivided into k congruent subsets,
each of which may be magnified by a constant factor Mto yield a whole set S (Devaney 187).

As we discussed in Section 3.3, the Cantor set is affine self-similar.

Fractal Dimension
Suppose the affine self-similar set Smay be subdivided into k congruent pieces,
each of which may be magnified by a factor of Mto yield the whole set S. Then, the fractal dimension
D of Sis (Devaney 188):
logk
~ logM

To understand fractal dimension, first we consider a square. We see that if we break the square into
pieces that are 1/n the size of the original square, we need n? pieces to reassemble the square. The
fractal dimension of a square is (Devaney 189):

B logn® ~ 2logn

~ logn  logn
We see that the topological and fractal dimensions of the square are equal.

The Cantor set has a well-defined fractal dimension. The Cantor set has 2"intervals and a
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magnification
factor of 3"at any stage, so the fractal dimension of C is (Devaney 190):

D log2™  nlog2

= . = 0.6300...
log3™  nlog3

As we predicted, the dimension of the Cantor set is between 0 and 1. The Cantor set does not have
topological dimension, but it does have a well-defined fractal dimension. This shows that the Cantor
set

is indeed a fractal.

Applications in measure theory

The measure of Cantor sets.
Definition of Lebesgue measure. Now that we have discussed the topological
properties of Cantor sets, it is fundamental question also to ask how "big" they are.
This idea is trivial for finitely many disjoint intervals just add up the lengths -
yet in the infinite case is somewhat more complicated. The concept of the Lebesgue
measure, one particularly useful type of measure in mathematics, is basically the
total length of the shortest possible intervals that encapsulate a given subset. A
full discussion of this measure is beyond the scope of this paper, but it success to
note that it gives a more rigorous notion of size to sets.
The Lebesgue measure on R satisfy the following properties:

1. m(A) 20

2. m(@)=0

3. m(lab))=b-a

4. Itis countably additive. Namely, for all countable collections {Ex}oo of pairwise

disjoint setsin 3,

(U Ek> = Zm(Ek>

As an immediate consequence of properties 1 and 4, if A Type equation here. B then m(A) <
m(B).
It is easy to check that this consequence along with property 3 implies that points
have measure 0, and in fact, countable sets also have measure 0. We can also
calculate the measure of the standard Cantor set.

The standard Cantor set. Since we remove the middle 1/3 of each remaining
interval in each iteration, the Lebesgue measure of Cnis (2=3)n (2nintervals each
of length 3 n). Each Cncontains C, so the measure of C is no larger than that of
any Cn. Taking the limit of it as n goes to infinity gives us zero, which is a fairly
counterintuitive result: countable sets all have measure zero, but the Cantor set
gives an example of a set that is uncountable and also measure zero.

Now, generalizing the standard Cantor set can lead to even more counter-intuitive
results. We begin with a theorem.

Theorem . There exists a nowhere dense set with positive measure.

This theorem can be illustrated by the following category of Cantor sets.

3.1.3. Fat Cantor sets. Instead of removing a constant portion of the original set

in each iteration, fat Cantor sets are created by removing progressively smaller
portions of the original set in each step such that the ratio of what is being removed
to the interval it is being removed from goes to 0 as n goes to infinity.

Ex: remove the middle (1=k)" of Cn-1, where k > 3.




Figure 4. Example of a fat Cantor set

Unlike the standard ternary cantor sets, these fat Cantor sets have a positive
measure, which is odd because they are nowhere dense and don't contain even one
interval. Take the example mentioned earlier that removes the middle intervals of
lengths (1=k)" from Cn-1, k > 3.
The Lebesgue measure of the removed intervals

=1/k+(1/k)2x24+ (1/k)3 x4+ ...

=1/2%(2/k+ (2/k)* + (2/k)* + ...)

=1/2x2/kx1/(1—2/k)

= (1/k) * (k/k — 2)

=1/(k—2).

Therefore, the Lebesgue measure of the corresponding fat Cantor set is (k-3)=(k-
2)

An example of the fat Cantor set is the Smith{Volterra{Cantor set (SVC): k = 4

in this case, and its Lebesgue measure is 1=2.

Dimension.

Definition. In mathematics, the notion of fractional dimension, an intrinsic

property of a set, is an extension of the idea that a line is one-dimensional, a plane

is two-dimensional, and space is three-dimensional. First, let us explore one way to
approach how the dimensions of, say, a line segment and a rectangle are defined.

A line segment has dimension 1, because as we stretch it to twice its original length, its
'substance'{length{doubles as well. In the case of a rectangle, if

we stretch all sides to twice their original scales, its substance{namely the area{
quadruples. Taking the logarithm of 4 over 2 gives us 2.

Put in an equation, we can write that

é = 9P

Sy
where S1is the new substance, S2is the old substance, S stands for the stretch,
and D is the dimension. The dimension is the exponent by which the size changes
when scaled by a certain amount.
As in the two examples above, you might expect that only integer dimensions
are taken. As will be shown below, however, the dimension of mathematical objects
are not necessarily integers and can take on many arbitrary values.
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....... > dimension = logz? = 1
Si=1 stretch = 2

@
I
N

------- >
stretch =2

Si=1

.. dimension = logz* = 2

S:=4

Figure 5. dimensions of line segments and squares

Fractals in Art

Benoit Mandelbrot considered his fractal geometry to be a new form of art (Mandelbrot 21). He
claims

fractal geometry as an \art for the sake of science," and refers to the fractal as a useful beauty
(Mandelbrot

22). Art historians and mathematicians, such as Mandelbrot, have been pondering the connections
between the fields of art and mathematics for decades. Here, we will connect the Cantor set to art
and

architecture.

Figure 6: Connected Cantor Set, (Tex Stack Exchange).

Mandelbrot finds the coexistence of order and chaos in the issue of dynamics of iteration beautiful in
itself (Mandelbrot 23). He also finds images of fractals artistic. In many cases, the traditional image
of a

common fractal is altered to make it more aesthetically pleasing. For example, the representation of

the
Cantor set above connects each iteration to the previous iteration. This Connected Cantor set (Figure

6) is more artistic than the usual representation of the set.
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This image still represents the Cantor Set. Instead the of the traditional representation that consists
of

a set of separated lines, this representation exhibits one continuous object. It is a more organic image,
which makes it more aesthetically pleasing. We can find examples in Chinese art and Architecture
that

resemble both this Connected Cantor set, as well as the traditional representation of the Cantor set.

Chinese Art

Fractals appear in many pieces of Chinese art. We can even find resemblance to the Cantor set,
particularly the Connected Cantor set. Mandelbrot claims that fractals can serve as representations
for natural

objects (Mandelbrot 22), and we will apply this idea to Chinese art.

We first turn to the work of Guo Xi (1020-1090), a Chinese artist of the Northern Song dynasty
(Bentley).

Guo Xi painted in the black and white monumental landscape rugged style (Murashige 343). The
rugged

monumental landscape style originated in the previous Five Dynasties period and was initiated by
painter

Li Cheng (Bentley). It featured \crab-claw," defoliated tree branches. During the Northern Song period,
Guo Xi adapted this monumental style, accentuating the crab-claw branches (Bentley). Though Guo's
work came long before the Cantor set was discovered, we can find a resemblance to the set in his art.

Figure 7: Early Spring, Guo Xi, ink on paper; 1072.

We consider Early Spring, one of Guo Xi's most famous works (Figure 7). This piece, painted in 1072,
features the twisting crab-claw branches that the artist was known for (Murashige 343). The branches
begin with a thick branch size, and a smaller arm branches o_ from each larger branch. This process
is repeated on each smaller branch until the brush stroke becomes too thin to possibly be drawn. This
process is reminiscent of the iterative process we use to construct the Cantor set. These branches
also

resemble our representation of the Connected Cantor set in Figure 6. This Cantor set representation
shows each iteration connected to the next iteration in a branch-like way. The trees in Guo Xi's Early
Spring resemble a version of our connected Cantor set in which the branches have been turned and
twisted in different directions.

Guo Xi worked in a time where Song neo-Confucianism was the most prominent philosophy accepted
by

the people of China. This philosophy influenced both the subject matter and style of the work at the
time (Bentley). A major concept explored in this type of neo-Confucianism is li, which means \inner
structure.” There are three different levels of li : the human level, the natural level, and the heavenly
level (Li, Yan 205). The goal of each person is to align her own moral inner structure, which has been
corrupted by emotions, with those of nature and heaven (Bentley). These philosophical levels are
fractal-

like. The ultimate goal would be for the li to be \self-similar" at each level. The human at the _rst
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philosophical level would like to make her inner structure \look" like the the inner structure of the next
two levels. No matter the level, li should look the same. In other words, li should be self-similar. The
concept of li is defined in a similar way to the way we define a fractal. Thus, even the philosophy
behind

Guo Xi's Early Spring resembles a fractal structure.

Figure 8: Seven Junipers, Wen Zhengming; Ming dynasty.

We will also consider Wen Zhengming (1470-1559), a Chinese scholar and painter from the Ming
dynasty

(Bentley). His famous Seven Junipers features twisted Juniper tree branches (Figure 8). These
branches

share the same resemblance to the Connected Cantor set representation in Figure 6 as those of Guo
Xi's trees. This is an even more distorted version of our Connected Cantor set, but it still exhibits the
thinning out effect we observed in Early Spring. By examining the works of Guo Xi and Wen
Zhengming,

we find a resemblance to the Cantor set. We see that the Cantor set, and fractal structure in general,
can be applied in the context of Chinese art.

Architecture

Fractals also appear in architecture. We can find the Cantor set in the patterning of windows or other
features on buildings. For example, we look to the AT&T building, now known as the Sony Tower, in
New York City (Figure 9). The building was completed in 1984 and was designed by architect Philip
Johnson and his partner John Burgee. To find a Cantor set, we consider the pattern of the windows
on

the front face of the building.

The top level of windows is in a symmetrical pattern. From the left, there is one medium-width
window,

then three large-width windows. The central section of windows contains eight window sections with
small widths. The windows on the right side of the central section mimic the pattern of those on the
left

side. We will consider the windows themselves as part of our Cantor set and the concrete as the part
we remove. At the next level of windows, each large-width window is “split" into four windows. At this
iteration of the set, more points, represented by the concrete, have been removed. We can think of the
pattern of the windows as a Cantor set. This is an example of a Cantor set that is not the traditional
middle-thirds set.
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Figure 9: Sony Tower, Philip Johnson and John Burgee, New York City, New York; 1984.

For another depiction of the Cantor set in architecture, we turn to a much older example. We can find
the Cantor set in the capitals of Egyptian columns. For example, consider this column capital from the
Temple of Dendur from 15 BC, which now resides in the Metropolitan Museum of Art in New York City
(Figure 10).

Figure 10: Column Capital from Temple of Dendur, Metropolitan Museum of Art, 15BC.

The capital features bundles of papyrus stalks and lotus leaves, which take the form of a curve. The

top
curves are split into two smaller curves by removing a center section. The two smaller curves also

shift

away from the center of the larger curve. This process is repeated three times on this particular
capital.

This capital resembles a Cantor set in that various intervals of marble are removed through an

iterative
process. The Egyptians may have even intentionally used an iterative process to create this motif.

Applications in the real world: fractal phenomena

Because of its self-similar nature, the standard Cantor set is the prototype of a fractal. In fact, a well
established mathematical branch, fractal geometry is widely applied to study patterns and
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phenomena in various aspects of our lives, and in this paper, we picked three examples with the
closest relationships to the Cantor

sets.

Fractal Geometry in Nature.

Among the numerous fractal structures observed in nature{spirals, tree branches, snow

flakes{ Saturn's rings have a special relationship to the Cantor sets.

Note the different sizes in the gaps of Saturn's rings in below , which look like the intervals removed
from a Cantor set. The figure on the right consists of the product of fat Cantor set and a circle. The fat
Cantor set has positive measure,

Figure:11 Left: Saturn's rings (NASA). Right: a product of a Cantor set and a circle.
specifically provides an interesting comparison with Saturn, because if the rings' cross section were a
different Cantor set of zero area, the rings would have almost zero area to reflect light and so would
be almost invisible.

Mandelbrot and the Fractal Market.

Compared to unambiguous self- similar patterns in art and nature, the applications of Cantor sets
and fractals to the financial world come in a more subtle way. Mathematician Benoit Mandelbrot
(1987) once compared

markets to turbulent seas in his “Ten Heresies of Finance," where he argues that :" the very heart of
finance is fractal." In discussing the applications of fractals to analyzing markets, he states that the
simplest fractals scale

Figure 12:Bitcoin Price, for example, in the past 18 hours, with an estimated Hurst Coeffcient of
around 0.4-0.5

the same way in all directions, hence are called self-similar. If the fractals scale in many different
ways at different points{the exact reality of the markets ... their mathematical properties become
intricate and powerful."

The comparisons with nature lead to idea that financial markets are similar to the behavior of various
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natural phenomena in the world. The history of shifts from classical to modern views on the market
modeling were

Figure13: Turbulent sea

outlined, visualizing some misconduct of classical approach to market modeling and providing
examples of
utilizing the fractional approach.

The fractal market hypothesis.

An alternative to EMH. For decades, the Efficient Market Hypothesis has been the dominant
foundation for the modeling of financial markets. It states that stocks always trade at their fair value
on exchanges, making it impossible for investors to purchase undervalued stocks or sell stocks for
inflated prices. The core

idea of the Efficient Market Hypothesis lie in the observation that stock prices exhibit random walks,
which can be modeled by something called geometric Brownian motion. Modeling with geometric
Brownian motion suggests that the percentage change of a stock price in a given future time interval
is completely independent of its previous prices. Furthermore, the distribution of the percentage
changes after a given time has passed t should be normally distributed, with variance proportional to t.
The model of geometric Brownian motion is useful, but not perfect. For instance, one can modify it by
adding a "drift" term to capture the reality that stock prices tend to increase over time. A more core
issue, though, is the idea of fat tails, which reflect the disproportionate influence of rare events on the
economy. The reality of

fat tails has laid the foundation of a new theory { the \Fractal Market Hypothesis".

One of the central arguments in the fractal marker hypothesis is that the frequency distribution of
returns looks the same at different investment horizons, which is the total length of time that an
investor expects to hold a security or a portfolio. The longer-term horizons are based more upon
fundamental information, and shorter-term investors base their views on more technical information.
As long as the market maintains this fractal structure, with no characteristic time scale, the market
remains stable because each investment horizon provides liquidity to the others.

As a result, the geometric Brownian motion, as a stochastic process to model stock movements in
EMH according to the Black{Scholes model, can be potentially replaced by the fractional Brownian
motion with a special parameter Hurst coefficient "H". For self-similar time series, H is directly related
to fractal dimension, D, where 1 < D < 2, such that D = 2 - H. Increments are independent only when H
=1/2,for H>1/2, increments are positively correlated and for H < 1/2 they are

negatively correlated. [14]
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Figure 14. Volterra's Function

The values of the Hurst exponent vary between 0 and 1,
with higher values indicating a smoother trend, less volatility, and less roughness.

Figure 15. Patterns corresponding to different H coefficients

An intriguing point where Cantor sets come into play is when we observe the level set of a one
dimensional fractional Brownian motion mentioned above. Assuming in case of figure 8 that the H
index of bitcoin price is around 0.5 (0.495 + 0.102) according to [11], the chance of the stock price
going up or down is close to random.

Therefore, any typical level set (e.g. the red line in figure 7) is a closed, perfect set resulting from the
properties of Brownian motions (both fractional and geometric) [12]. Furthermore, the level sets will
almost surely not contain any intervals, meaning with the above properties that they must be Cantor
sets.

Conclusion

Georg Cantor's classical middle-thirds set exhibits intriguing mathematical properties. We showed
that

the Cantor set is uncountable, which is surprising because it seems that it should be a small set. We
also

proved the non-intuitive quality that though the Cantor set contains no subintervals, it also contains
no isolated points. We can produce the Cantor set through a two-dimensional system of two
functions.

This study revealed the Cantor set as an attractor to an iterated function system. We also considered
the Cantor set as a one-dimensional system of points that are not sent to infinity through exploration
of

the Tent Function. Discussion of the Cantor set as a fractal led us to find that C has a fractal
dimension
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between 0 and 1.

Benoit Mandelbrot considered his fractal geometry an art form. We considered the Cantor set as an
artistic form, with a focus in two different areas. Our Connected Cantor set representation resembles
the

trees in works by Chinese painters Guo Xi and Wen Zhengming. We also found a resemblance to this
Connected Cantor set in the Song Tower of New York City. Lastly, we considered the column capital
of

the Egyptian Temple of Dendur and found a more classic representation of the Cantor set.

We have taken a complex mathematical set and applied it to the world of art. The Cantor set not only
proves to be a set with interesting mathematical properties, but also a beautiful mathematical object
with multiple applications in an artistic context.
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INTRODUCTION 1

Visual proofs are not really proofs.lts therefore Eisenberg and
Tommy Dreyfus note in their paper'on the reluctance to
visualise in mathematics",some consider such visual
arguments to be of little value,and "that there is one and only
one way to communicate mathematics, and visual proofs are
not acceptable.But to counter this viewpoint, Eisenberg and
Dreyfus go on to give us some quotes on the subject:

(Paul)Halmos, speaking of Solomon Lefschetz stated"He saw
mathematics not as logic but as pictures". Speaking of what it
takes to be a mathematician,he stated:"To be a scholar of
mathematics you must be born with.....the ability to visualise
"and must teachers try to develop this ability in their students

So if visual proofs are not proffs,what are they? Generally
visual proofs are pictures or diagrams that help the observer
see why a particular statement may be true.and also to see
how one might begin to go about proving it's true.In some
equation or two may appear in order to guide the observer in
this process.But the emphasis is clearly on providing visual
clues to the observer to stimulate mathematical thoughts.



2

So, here | presented some inequality and infinite series with
visual proofs which helps students to find enjoyment in
discovering or rediscovering some elegant visual
demonstration of certain mathematical idea,that teachers will
want to share many of them with their students and that all will
find stimulation and encouragement to try to create new
"visual proofs" or "visual proofs of inequality and infinite series



1. AM-G.Minequality 3
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Here, Comparing,APGQand A
RGQ Weget,GQ/b=a/GQ

GQ=v(ab)
Hence complete the proof.

Proof:ab=(a+b)?/4-(a-b4 (a+b)/2=V(ab)
<(a+b)"2/4



Padoa's inequality
abc > (a+b—c)b+c—a)lc+a—Db).

- c - S

2\Vxy

o

abc = Y+ 2)(z+x)(x+y)

> 2/yz - 2/2x - 2 /xy
x4y = 2./xy. = (22)(2x)(2y)
=(@+b—c)b+c—a)(c+a—Db).

Solution : We have a2 2a2-(b-c)2 =(a+b-c)(a+c-b).

Analogously b2 2(b+a-c)(b+c-a) and c22(c+a-b)(c+b-a).

a202c2  2(a +b-c)2(brc-a)2(cra-b)2

abcz(a+b-c)(b+c-a)(c+a-b).
Equality holds if and only ifa=b =c, i.e.

the triangle is equilateral.



Cauchy Schwartz inequality
lax + by| < Va2 + b2 VX2 4 32 5
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lax + by| < lal |x| + 16l |yl < Va? + B>/ x? + y2.

Proof:Let(a,b)and(x,y) be not proportional.

Let us considerthe expression

(a-kx)?+(b-ky)?, where kis real.

Forall real k,the expression is greater or equal to zero.
The equality occurs only when a-kx=0,b-ky=0.Let,
(a-kx)?+(b-ky)?>0

Or,(a%+b?)-2k(ax+by)+k?(x?+y?)>0

ltis obvious that,

(a*+b?)(x*+y?)>(ax+by)

Hence complete the proof.



Arithmetic mean -root mean square
inequality  as=o0 ath _ JEEE

2 - 2

— —
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Proof:(a-b)*>0. & a+b2>2ab
& 2(a2+b2)2a2+b%+2ab & 2(a2+b?)2(a+b)2 &

(a2+b?/2 > (a+b)2/4. Hence (a2+b?)/22(a+b)2/ 4 .

Equality holds if and only ifa-b=0,i.e. a =b.



For Any x>0,then (x+1/x)is
greater or equal to 2

,*x'i»

® =

2

Solution From the obvious inequ
ality (x -1)2 20. we have X2 —2x+120 & x2+1
22X, and since x>
O if we divide by x we get the desired
inequality. Equality occurs if and only if x -1.=0

,lLe.x=1.



LEMMA: ab+bc+ac$czz+bz+c2

M

a,b,c €R.Prove the inequality

a?+b2+c22ab+be+ca.
:Since(a-b)2+(b-c)2+(c-a)220.we
2(a2+b2+c2)22(ab+be+ca)® al+b2+c22ab

+bc+ca. Equality occursifandonlyifa=b
=C.



Infiniteseries

Let{an}be asequence ofreal numbers.
Thentheexpressionat1+a2+a3+.......
Willbe called aninfinite series.

Geometric Series:

Theinfinite Geometric Series
a+ar+ar?+.....(a>0)is

(a)convergentifthe common ratiorlies between
-1and +1.in this case the sum of the seriesis a/(1
-r)

(b) properlydivergentifrisgreaterorequalto 1.
© Oscillatesfinitely if r=-

1and Oscillates infinitelyifr<-1.

(improperly divergent)

Proof:

Sn=a(r"-1)/(r-1).risnotequalto 1.

(a)

If ntendstoinfinite then S=a/(1-r)

(d)



INfiNnite series

Ifr=-1,we have
Sn=a-ata-a+....... tonterms.
Ifnisodd,thenthesumisa,
Ifniseven,thenthesumisO.
Theseries Oscillatesinfinitely.
So,the Geometric Series coverges
Onlywhen|r|<1.

10



Somevisualproofofinfinite series

7.(V)+(Va)2+(V5)3.....=Va(proof

Proof: weknowthat,
a+ar+ar?+....=a/(1-r)whererislessthan1.
Herea=",r="

Hence sumofthe seriesis,

(73){1-(5)}="2

Some otherexamples,
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Bythisthree above examples,

The general result 1/n+1/n?+1/n°+.......=1/

(n-1)

can be proved using this construction with a
regular(n-2)gon.



Geometric Series

1-r

ar ar a

a>0,re©,1) = a+ar+a’+ar+---=

1—r



Geometric Series

I.a—{—ar—{—arz—i—---:ﬁ, O<r<l:
a a
y 4 4
A (11”11’)
y=rx+a ar?
ar
ar
a
a y=x
X
II.a—ar+ar2—---:1i+r, O<r<l:
A
a
(L L)
ar2 - 1+I",1+I"
y=-rxta e
P ar
| o
ar? ’
a
ar
y=Xx
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Differentiated
Geometric Series

15



alternating series
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Alternating harmonic
Series S
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e
THE FIBONACCI NUMBERS AND ITS APPLICATIONS

A Fibonacci number is a series of numbers in
which each Fibonacci number is obtained by adding
the two preceding numbers. It means that the next
number in the series is the addition of two previous
numbers. Let the first two numbers in the series be
taken as 0 and 1. By adding 0 and 1, we get the third
number as 1. Then by adding the second and the third
number (i.e) 1 and 1, we get the fourth number as 2,
and similarly, the process goes on. Thus, we get the
Fibonacci series as 0, 1, 1, 2, 3, 5, §, ....... Hence, the
obtained series is called the Fibonacci number series
or Fibonacci Sequence.

The list of numbers of Fibonacci Sequence is given below.
This list is formed by using the formula, which is mentioned
in the above definition.

Fibonacci Number Series

011,2,3,5,8,13, 21, 34, 55, 89, 144, 233, 377,
610,987,1597,2584,4181, 6765,10946, 17711,
28657,46368, 75025, 121393, ....ccccvrrmrumrerinnien s




When we make squares with those widths, we
get a nice spiral, which is called Fibonacci spiral.

The Fibonacci numbers were first described in
Indian mathematics, as early as 200 BC in work by Pingala on
enumerating possible patterns of Sanskrit poetry formed
from syllables of two lengths. They are named after the
[talian mathematician Leonardo of Pisa, also known as
Fibonacci, who introduced the sequence to Western
European mathematics in his 1202 book Liber Abaci.

The Fibonacci sequence appears in Indian
mathematics, in connection with Sanskrit prosody. In the
Sanskrit poetic tradition, there was interest in enumerating
all patterns of long (L) syllables of 2 wunits duration,
juxtaposed with short (S) syllables of 1 unit durat1on
Counting the different patterns of
successive L and S with a given total
duration results in the Fibonacci
numbers: the number of patterns of
duration m units is Fpn+1.




Knowledge of the Fibonacci sequence was expressed
as early as Pingala (c. 450 BC-200 BC). Singh cites Pingala's
cryptic formula misrau cha ("the two are mixed") and
scholars who interpret it in context as saying that the number
of patterns for m beats (Fm+1) is obtained by adding one [S] to
the Fi, cases and one [L] to the Fi-1 cases. Bharata Muni also
expresses knowledge of the sequence in the Natya Shastra
(c. 100 BC-c. 350 AD). However, the clearest exposition of the
sequence arises in the work of Virahanka (c. 700 AD), whose

own work is lost, but is available in a quotation by Gopala
(c. 1135):

Hemachandra (c. 1150) is credited with knowledge
of the sequence as well, writing that "the sum of the last and
the one before the last is the number ... of the next matra-
vrtta."

The Fibonacci sequence first appears in the book
Liber Abaci (The Book of Calculation, 1202) by Fibonacci
where it is used to calculate the growth of rabbit populations.
Fibonacci considers the growth of an idealized (biologically
unrealistic) rabbit population, assuming that: a newly born
breeding pair of rabbits are put in a field; each breeding pair
mates at the age of one month, and at the end of their second
month they always produce another pair of rabbits; and
rabbits never die, but continue breeding forever. Fibonacci
posed the puzzle: how many pairs will there be in one year?

. At the end of the first month, they mate, but there is still
only 1 pair.

. At the end of the second month they produce a new pair,
so there are 2 pairs in the field.




. At the end of the third month, the original pair produce a
second pair, but the second pair only mate to gestate for
a month, so there are 3 pairs in all.

. At the end of the fourth month, the original pair has
produced yet another new pair, and the pair born two
months ago also produces their first pair, making 5 pairs.

At the end of the nth month, the number of pairs of
rabbits is equal to the number of mature pairs (that is, the
number of pairs in month n - 2) plus the number of pairs
alive last month (month n - 1). The number in the nth month
is the nth Fibonacci number.

Month Pairs
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The name "Fibonacci sequence” was first used by the
19th-century number theorist Edouard Lucas.

We celebrate Fibonacci Day Nov. 23rd not just to
honor the forgotten mathematical genius Leonardo Fibonacci,
but also because when the date is written as 11/23, the four
numbers form a Fibonacci sequence. Leonardo Fibonacci is
also commonly credited with contributing to the shift from
Roman numerals to the Arabic numerals we use today.




CALCULATIONS OF THE FIBONACCI NUMBERS

The Fibonacci numbers may be defined by recurrence
relation.

Fo=0Fi1=1
and Fn = Fn-1 + Frg, for n>1

under some older definitions, the value Fo = 0 is
omitted, so that the sequence starts with F1 = F2 = 1 and
the recurrence Fn = Fn-1 + Fn-2 is valid for n>2, where F, is
the n™ Fibonacci number in the sequence.

The only problem with this formula is that it's a
recursive formula, meaning it defines each number of the
sequence using the preceding numbers. So if you wanted to
calculate the tenth number in the Fibonacci sequence, you'd
need to first calculate the ninth and eighth, but to get the
ninth number you'd need the eighth and seventh, and so on.

To find any number in the Fibonacci sequence without
any of the preceding numbers, you can use a closed-form
expression called Binet's formula:

F,= ¢ =C®




In Binet's formula, the Greek letter phi ()
represents an irrational number called the golden ratio: (1
++/ 5)/2, which rounded to the nearest thousandths place
equals 1.618.

You can also calculate a Fibonacci Number by
multiplying the previous Fibonacci Number by the Golden
Ratio and then rounding.

C- Program to compute 15t n terms of the Fibonacci.
Sequence

//Fibonacci Sequence - 1st n terms with t1=0, t2=1
#include<stdio.h>
#include<math.h>
main()
{

int t1,t2,t3,n,i;

t1=0; t2=1;

printf("Please let me know how many terms you want, it
should be a natural number\n");

scanf("%d",&n);

printf("You have entered n= %d \n",n);

printf("First %d terms of the Fibonacci Sequence are as
follows:\n",n);

for (i=1;i<=n;i++)

{

printf("term %d is %d \n",i,t1) ;




t3=t1+t2;
t1=t2;
t2=t3;

}

Output of the Program:

Please let me know how many terms you want, it should be a
natural number

10

You have entered n= 10

First 10 terms of the Fibonacci Sequence are as follows:
term1is0

term 2is 1

term 3is 1

term 4 is 2

term 5 is 3

term 6 is 5

term 7 is 8

term 8 is 13

term 9is 21

term 10 is 34




C- Program to compute Fibonacci Sequence terms upto a
natural number n

//Fibonacci Sequence terms upto a given positive integer n
// 1sttwo terms are t1=0, t2=1
#include<stdio.h>
#include<math.h>
main()
{
int t1,t2,t3,n,i;
t1=0; t2=1;
printf("Enter the natural number n upto which you want
the Fibonacci sequence terms \n");
scanf("%d",&n);
printf("You have entered n= %d \n",n);
printf("Fibonacci Sequence terms upto %d are as
follows:\n",n);
printf("%d, %d",t1, t2);
t3=t1+t2;
while (t3 <=n)
{
printf(", %d",t3);
t1=t2;
t2=t3;
t3=t1+t2;

}




Output of the Program:

Enter the natural number n upto which you want the
Fibonacci sequence terms

150

You have entered n= 150

Fibonacci Sequence terms upto 150 are as follows:
0,1,1,2,3,5,8,13, 21, 34,55, 89, 144

Two quantities are said to be in golden ratio, if their ratio
is equal to the ratio of their sum to the larger of the two
quantities. The golden ratio is approximately equal to 1.618.

For example, if “a” and “b” are two quantities with
a>b>0, the golden ratio is algebraically expressed as follow:

a+b
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The golden ratio is an irrational number, which is the
solution to the quadratic equation x2-x-1=0.

There is a special relationship between the Golden
ratio and the Fibonacci number. When we take any two
successive Fibonacci numbers, their ratio is very close to
the Golden ratio.

In fact, the bigger the pair of Fibonacci Numbers, the
closer the approximation. Let us try a few:

A B BJ/A

2 3 15

3 5  1.666666666..
5 8 16

8 13  1.625

144 233 1.618055556...
233 377 1.618025751..

Fn+1

lim =1.618

n— o Fn
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The following are the properties of the Fibonacci numbers.

® In the Fibonacci series, take any three consecutive
numbers and add those numbers. When you divide the
result by 2, you will get the three numbers.

For example, take 3 consecutive numbers such as 1, 2,
3. when you add these numbers, i.e. 1+ 2+ 3 = 6. When 6 is
divided by 2, the result is 3, which is 3.

® If you take any three consecutive Fibonacci numbers,
the square of the middle number is always one away from

the product of the outer two numbers i.e Fp+1 . Fn-1 = Fp?

= (-1




For Example, is we take the consecutive triplet 8, 13,
21, you can see that 168 — 169 = -1. If you look at a later

triplet 89, 144, 233 we see that 20737 - 20736 = 1.

® Take four consecutive numbers other than “0” in the
Fibonacci series. Multiply the outer number and also
multiply the inner number. When you subtract these
numbers, you will get the difference “1”.

For example, take 4 consecutive numbers such as 2,
3, 5, 8. Multiply the outer numbers, i.e. (2 X 8) and multiply
the inner number, i.e. (3 X 5). Now subtract these two
numbers, i.e. 16-15 =1. Thus, the difference is 1.

® The sequence goes even, odd, odd, even, odd, odd,
even, odd, odd, ...:

0,11,2,3,5,8,13,21,34,55,89....ccccceeiiiiiiiiinnnrns

Since adding two odd numbers produces an even
number, but adding even and odd (in any order) produces an
odd number.

® If we take any four consecutive Fibonacci number,
then subtracting the sum of the second and third
numbers from the sum of the first and fourth numbers
will always yield the first of those four numbers.

For example, if we take any four consecutive
Fibonacci numbers such as 3, 5, 8, 13. Then (13+3)-
(5+8)=16-13=3, the first number of those four numbers.




Fibonacci can be found in nature not only in the famous
rabbit experiment, but also in beautiful flowers. On the head of
a sunflower and the seeds are packed in a certain way so that
they follow the pattern of the Fibonacci sequence. This spiral
prevents the seed of the sunflower from crowding themselves
out, thus helping them with survival. The petals of flowers and
other plants may also be related to the Fibonacci sequence in
the way that they create new petals .

Probably most of us have never taken the time to
examine very carefully the number or arrangement of
petals ona flower. If we were to do so, we would find that
the number of petals on a flower that still has all of its
petals intact and has not lost any, for many flowers is a
Fibonacci number .

1 petal: white cally lily

2 petal: Euphorbia milii,
Asiatic dayflower




3 petals: lily, iris

5 petals: buttercup, wild rose, Frangipani, Crepe Jasmine




34 petals: plantain, pyrethrum

55, 89 petals: michaelmas daisies, the asteraceae family

g .

Ever plucked rose petals? Even if
you tear it, you must not have seen how ‘/ ,
many petals there are. They have [f &
13,21,34,55 or 89 numbers petals.

Plants show the Fibonacci numbers in the
arrangements of their leaves. Three clockwise rotations,
passing five leaves two counter-clockwise rotations.
Sneezewort (Achillea ptarmica) also follows the Fibonacci
numbers.

Schematic diagram (Sneezewort)




Why do these arrangements occur?
In the case of leaf arrangement, or
phyllotaxis, some of the cases may be
related to maximizing the space for each
leaf, or the average amount of light falling
on each one.

The Fibonacci sequence can also be seen in the way
tree branches form or split. A main trunk will grow until it
produces a branch, which creates two
growth points. Then, one of the new
stems branches into two, while the
other one lies dormant. This pattern
of branching is repeated for each of
the new stems. A good example is the
sneezewort. Root systems and even
algae exhibit this pattern.

21
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The head of a flower is also subject to
Fibonaccian processes. Typically, seeds are
produced at the center, and then migrate
towards the outside to fill all the space.
Sunflowers provide a great example of
these spiraling patterns.




There are 55 spirals spiraling outwards and 34
spirals spiraling inwards in most daisy or sunflower
blossoms. Pinecones clearly show the Fibonacci spirals.

The seed pods on a pinecone are arranged in a spiral
pattern. Each cone consists of a pair of
spirals, each one spiraling upwards in
opposing directions. The number of |
steps will almost always match a pair [\
of consecutive Fibonacci numbers. For |
example, a 3-5 cone is a cone which
meets at the back after three steps
along the left spiral, and five steps
along the right.

Fibonacci spiral can be found in cauliflower. The
Fibonacci numbers can also be found in Pineapples and
Bananas (Lin and Peng). Bananas have 3 or 5 flat sides and
Pineapple scales have Fibonacci spirals in sets of 8, 13, and
21. Inside the fruit of many plants we can observe the
presence of Fibonacci order.




Fibonacci spiral are also found in Snail shells and
nautilus shells. It can also be seen in the horns of certain
goats, and the shape of certain spider's webs.

Not surprisingly, spiral galaxies also follow the
familiar Fibonacci pattern. The Milky
Way has several spiral arms, each of
them a logarithmic spiral of about 12
degrees. As an interesting aside, spiral
galaxies appear to defy Newtonian
physics.

Storm systems like hurricanes and
tornadoes often follow the Fibonacci sequence. @ = |
Next time you see a hurricane spiraling on the B T}
weather radar, check out the unmistakable
Fibonacci spiral in the clouds on the screen.




Humans exhibit Fibonacci characteristics. Every
human has two hands, each one of these has five fingers and
each finger has three parts which are separated by two
knuckles. All of these numbers fit into the sequence.
Moreover the lengths of bones in a hand are in Fibonacci
numbers.
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The mouth and nose are each & = =
positioned at golden sections of the distance =
between the eyes and the bottom of the chin.
Similar proportions can been seen from the e
side, and even the eye and ear itself (which
follows along a spiral).

It's worth noting that every person's body is different,
but that averages across populations tend towards phi. It has
also been said that the more closely our proportions adhere
to phi, the more "attractive" those traits are perceived. As an
example, the most "beautiful” smiles are those in which




central incisors are 1.618 wider than the
lateral incisors, which are 1.618 wider than
canines, and so on. It's quite possible that,
from an evo-psych perspective, that we are
primed to like physical forms that adhere to |
the golden ratio — a potential indicator of !
reproductive fitness and health. -

The cochlea of the inner ear
forms a Fibonacci spiral.

Even our bodies exhibit proportions that are
consistent with Fibonacci numbers. For example, the
measurement from the navel to the floor and the top of the
head to the navel is the golden ratio. Animal bodies exhibit
similar tendencies, including dolphins (the eye, fins and tail
all fall at Golden Sections), starfish, sand dollars, sea urchins,
ants, and honey bees.




Speaking of honey bees, they follow Fibonacci in
other interesting ways. The most profound example is by
dividing the number of females in a colony by the number of
males (females always outnumber males). The answer is
typically something very close to 1.618. In addition, the
family tree of honey bees also follows the familiar pattern.
Males have one parent (a female), whereas females have two
(a female and male). Thus, when it comes to the family tree,
males have 2, 3, 5, and 8 grandparents, great-grandparents,
gr-gr-grandparents, and gr-gr-gr-grandparents respectively.
Following the same pattern, females have 2, 3, 5, 8, 13, and so
on. And as noted, bee physiology also follows along the
Golden Curve rather nicely.

When a hawk approaches its prey, its sharpest view is
at an angle to their direction of flight — an angle that's the
same as the spiral's pitch.

Even the microscopic realm is not
immune to Fibonacci. The DNA molecule
measures 34 angstroms long by 21
angstroms wide for each full cycle of its
double helix spiral.




These numbers, 34 and 21, are numbers in the Fibonacci
series, and their ratio 1.6190476 closely approximates Phi,
1.6180339.

The Fibonacci sequence of numbers and the golden
ratio are manifested in music widely. The numbers are
present in the octave, the foundational unit of melody and
harmony.

Stradivarius used the golden ratio to make the
greatest string instruments ever created.

Howat's( 1983) research on Debussy’s works
shows that the composer used the golden ratio and
Fibonacci numbers to structure his music. The Fibonacci
Composition reveals the inherent aesthetic appeal of this
mathematical phenomenon. Fibonacci numbers harmonize
naturally and the exponential growth which the Fibonacci
sequence typically defines in nature is made present in
music by using Fibonacci notes. The intervals between
keys on a piano of the same scales are Fibonacci numbers

(Gend, 2014).




Take any two consecutive numbers from this series as
example 13 and 21 or 34 and 55.

Now smaller number is in miles = the other one in
Kilometer or bigger number is in Kilometers = the smallerone
in Miles (The other way around).

34 Miles = round (54.72) Kilometers = 55 Kilometers

21 Kilometers = round (13.05) Miles = 13 Miles
For distances which are not exact Fibonacci values you
can always proceed by splitting the distance into two or more
Fibonacci values.
As example, for converting 15 km into miles we can
proceed as following:
15km =13 km + 2 km
13 km -> 8 mile
2 km -> 1 mile
15 km -> 8+1 = 9 mile
Another example, for converting 170km into miles we
can proceed as:
170 km = 10*17 km
17km=13km+2km+2km=8+ 1+ 1 miles =
10 miles (approximately) Now, 170 km = 10*10 miles = 100
miles (approximately)
So, either way we can proceed. For bigger numbers we
can proceed as above. (Ref: Sudip Maji, B.C.Roy Engineering
College)




The Fibonacci Numbers are also applied in Pascal’s
Triangle. Entry is sum of the
two numbers either side of it,
but in the row above.
Diagonal sums in Pascal’s
Triangle are the Fibonacci
numbers. Fibonacci numbers
can also be found using a ,
formula

10 45 120210252 210120 45 10 1

Recently Fibonacci sequence and golden ratio are of
great interest to the researchers in many fields of science
including high energy physics, quantum mechanics,
Cryptography and Coding. Raghu and Ravishankar(2015)
developed a paper of application classical encryption
techniques for securing data.(Raphael and Sundaram,2012)
showed that communication may be secured by the use of
Fibonacci numbers. Similar application of Fibonacci in
Cryptography is described here by a Simple Illustration.

Suppose that Original Message’”CODE” to be
Encrypted. It is sent through an unsecured channel. Security
key is chosen based on the Fibonacci number. Any one
character may be chosen as a first security key to generate
cipher text and then Fibonacci sequence can be used. Agarwal
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et al (2015) used Fibonacci sequence for encryption data.

Method of Encryption

For instance, let the first security key chosen be ‘k’.
PlainText: C O D E
Characters:klmopqrstuvwxyzabcdefghljkl...
Fibonacci: 1235 .......

Cipher Text: Kl m o

Cipher Text is converted into Unicode symbols and saved in a
text file. The text file is transmitted over the transmission
medium. It is the first level of security.

Cipher text to Unicode

In the second level of security, the ASCII code of each
character obtained from the cipher text plus the ASCII code of
its previous character, and next character is added to the
ASCII code of the equivalent character in the original
message. Here, ASCII codes of four characters are used as a
security key to further encode the characters available in the
cipher text to Unicode symbols.

For instance,

-
I_ ELE

109{m} +111 (o) +112(p)+63(E} =401

108(1}+109{m}+11l0{n)}+68({0Q) =405

107 (k) + 108(1) +109(m)}+Fa(0) =403

> LOG{jl+1O07(k}+1OB(I}+67(C) = =88

By looking at the symbols in a text file no unknown persons




can identify what it is and the message cannot be retrieved
unless the re-trivial procedure is known.Mukherjee and
Samanta(2014) developed a paper where they used
Fibonacci numbers in hiding image cryptography.

Decryption method

The Decryption process follows a reverse process of
Encryption. Recipient extracted each symbol from the
received text file and mapped to find its hexadecimal value
.Obtained value is converted into a decimal value to find out
the plain text using the key. Without knowledge of the key an
unknown person cannot understand the existence of any
secret message.

It didn’'t take long for painters, particularly those
well-versed in the multidisciplinary approach that traditional
and Renaissance art represented at the time, to see that this
idea, as appealing as it is in all other elements of life, should
also be reflected in their paintings.

During this era, incorporation was purposeful, but through
de facto artistic evolution, the sequencing and ratios started
to infuse themselves into the artistic method of those who

followed and has become an almost essential component of
the artistic arrangement, both in realistic and non-figurative




paintings. As a result, the Fibonacci spiral and Golden Ratio,
as seen centuries ago, are today as visible in art and our
perception of them as they are in nature.

What is special about the sequence is that many
artists will intentionally use its aesthetic benefits, while other
highly respected photographic artworks may discover -
totally by chance - that it can be reproduced onto their
artwork, so much so that it has even been spotted in war
photos. When it comes to establishing an aesthetic or a design
new for a project, there are no restrictions for designers.

The Golden Ratio in connection to design is a source
of contention among mathematicians, graphic designers, and
scientists. But there is ample proof, both in nature and in
produced design, that a ratio is a reliable tool for creators. It
can be used for constructing a grid for a layout, determining
the best cropping for a photo, or determining sizes for type
hierarchy when highlighting material, to mention a few
examples. Overall, we believe it's an intriguing approach to
look at excellent design via a mathematical lens, and it's
amazing to see where and how it's employed in the
environment around us.

Leonardo da Vinici, no that's not a
typo, is well known for his usage of the
Fibonacci Sequence. One notable example
is his most famous work, The Mona Lisa.
Da Vinci utilized the sequence with the
Golden Spiral, which stems from the




Perfect Rectangle. The Perfect Rectangleis formed by
creating rectangles within the corresponding dimensions of
1.618, from each descending Fibonacci Number (8, 5, 3, 2, 1,
etc.) The spiral comes from touching each side in the Perfect
Rectangle.

So how exactly did Leonardo da Vinci go about
utilizing the Golden Spiral? First, he uses it to frame the
woman in the painting. The spiral begins at her left wrist then
travels to the background of the image, which contrasts the
beauty of her face. It then skims over her forehead and
continues turning until it kisses her chin. It rises, going past
the slight of her dimple. Lastly, it completes one rotation
which ends at the tip of her nose.

When making eye contact with someone, the ideal
place to look is actually their nose, as it centers the face.
And with the Mona Lisa, once ease your focus, you
immediately notice the eyes. Her most remarkable feature
that follows you everywhere you go.

Antiquity already studied this proportion given by the
number of gold and applied it in their constructions and
artistic works, as it was said that it has the characteristic of
being naturally pleasing to the human eye. Therefore, it can
be verified in several architectural works such as the
Parthenon, in which the width and height of the facade follow
the golden proportion; in the Egyptian Pyramids, in which




each block is 1.618 times larger than the block on the level
immediately above, and in some of them the inner chambers
are 1,618 times as long as they are wide; and even at the Taj
Mahal, which some theorists link its design to the golden
ratio.

These ratios of proportions bring several possible
readings in how the scale of architecture and the way a
building is designed is given, even unconsciously, by the
Fibonacci sequence, since one of the attributions of a building
made by an architect is that it is beautiful, pleasing to the eye:
quality generated by the proportion given by this
mathematical series.

The Fibonacci numbers are Nature's numbering
system. They appear everywhere in Nature, from the leaf
arrangement in plants, to the pattern of the florets of a
flower, the bracts of a pinecone, or the scales of a pineapple.
The Fibonacci numbers are therefore applicable to the
growth of every living thing, including asingle cell, a grain of
wheat, a hive of bees, and even all of mankind. Nature follows
the Fibonacci numbers astonishingly. But very little we




observe the beauty of nature. The Great poet Rabindranath
Tagore also noted this. If we study the pattern of various

natural things minutely we observe that many of the natural
things around us follow the Fibonacci numbers in real life
which creates strange among us. The study of nature is very
important for the learners. It increases the inquisitiveness
among the learners. The topic is chosen so that learners
could be interested towards the study of nature around them.
Security in communication system is an interesting topic at
present as India is going towards digitalization. A little bit of
concept for securing data is also provided in this model. Let
us finish by the words of Leonardo da Vinci “Learn how to
see, Realize thateverything connects to everything else”.
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