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INTRODUCTION :  

Certain groups and subgroups of groups have particularly nice structures. A locally cyclic 
group is a group in which each finitely generated subgroup is cyclic. Cyclic group is invented by Carl 
Friedrich Gauss, who considered the structure of multiplicative groups of residues mod n and 
established many properties of cyclic and more general abelian groups that arise in this way. 

A cyclic group is a group which is equal to one of its cyclic subgroups: G = ⟨g⟩ 
for some element g, called a generator of G. For a finite cyclic group G of 
order n we have G = {e, g, g2, ... , gn−1}, where e is the identity element and gi = 
gj whenever i ≡ j (mod n); in particular gn = g0 = e, and g−1 = gn−1. 

 

 

 

 

 

 

GROUP: A group consists of a set and a binary operation on that set that fulfills 
certain conditions. Groups are an example of example of algebraic structures, 
that all consist of one or more sets and operations on theses sets.  

In mathematics, the order of a finite group is the number of its elements. If a 
group is not finite, one says that its order is infinite.  



The order of an element in a group is the smallest positive power of the 
element which gives you the identity element. 

EXAMPLE:  

 Show that the set of all integers …-4, -3, -2, -1, 0, 1, 2, 3, 4, … is an infinite Abelian group with respect 
to the operation of addition of integers. 
  

 

 

 

Solution: 
Let us test all the group axioms for an Abelian group. 

(G1) Closure Axiom: We know that the sum of any two integers is also an integer, i.e., for 
all a,b∈Z, a+b∈Z. Thus Z is closed with respect to addition. 
(G2) Associative Axiom: Since the addition of integers is associative, the associative axiom is satisfied, 
i.e., for a,b,c∈Z∈ such that a+(b+c)=(a+b)+c 

(G3) Existence of Identity: We know that 00 is the additive identity and 0∈Z0∈�, 

i.e., 0+a=a=0+a ∀a∈Z0+ 
Hence, additive identity exists. 
(G4) Existence of Inverse: If a∈Z∈, then –a∈Z–∈. Also, (–a)+a=0=a+(–a)(–) 

Thus, every integer possesses additive inverse. Therefore Z is a group with respect to addition. 

Since the addition of integers is a commutative operation, therefore a+b=b+a ∀a,b∈Z 

Hence (Z,+)(,+) is an Abelian group. Also, Z contains an infinite number of elements. 

Therefore (Z,+)(,+) is an Abelian group of infinite order. 

 
 
 

SUBGROUP: Let (G, ⋆) be a group and H be a non-empty subset of G, such that (H, ⋆) is a 

group then, “H” is called a subgroup of G. 

That means H also forms a group under a binary operation, i.e., (H, ⋆) is a group. 

Also, any subset of a group G is called a complex of G. 

ORDER OF SUBGROUP: In general, the order of any subgroup of G divides 
the order of G. More precisely: if H is a subgroup of G, then ord(G) / ord(H) = 



[G : H], where [G : H] is the index of H in G, an integer. This is Lagrange's 
theorem. If a has infinite order, then all powers of a have infinite order as well. 

ORDER OF ELEMENTS OF SUBGROUP: The order of an element of a group 
(also called period length or period) is the order of the subgroup generated by 
the element. 

EXAMPLE:consider the set of nonzero real numbers, R∗,�∗, with the group 
operation of multiplication. The identity of this group is 11 and the inverse of any 
element a∈R∗�∈�∗ is just 1/a.1/�. We will show that 

Q∗={p/q:pandqare nonzero integers}and are nonzero integers} 

is a subgroup of R∗.∗. 

Solution 

The identity of R∗∗ is 1;1; however, 1=1/11=1/1 is the quotient of two nonzero 
integers. Hence, the identity of R∗∗ is in Q∗.∗. Given two elements 
in Q∗,∗, say p/qand r/s, , their product pr/qs is also in Q∗.The inverse of any 
element p/q∈Q∗is again in Q∗since (p/q)−1=q/p1=. Since multiplication in R∗∗ is 
associative, multiplication in Q∗∗ is associative. 

Definition of cyclic group: Cyclic groups are groups in which every element is a power of some fixed 
element. (If the group is abelian and I’m using + as the operation, then I should say instead that every 
element is a multiple of some fixed element.) Here are the relevant definitions. Definition. Let G be a 
group, g ∈ G. The order of g is the smallest positive integer n such that g n = 1. If there is no positive 
integer n such that g n = 1, then g has infinite order. In the case of an abelian group with + as the 
operation and 0 as the identity, the order of g is the smallest positive integer n such that ng = 0. 
Definition. If G is a group and g ∈ G, then the subgroup generated by g is hgi = {g n | n ∈ Z}. If the group 
is abelian and I’m using + as the operation, then hgi = {ng | n ∈ Z}. Definition. A group G is cyclic if G = hgi 
for some g ∈ G. g is a generator of hgi. If a generator g has order n, G = hgi is cyclic of order n. If a 
generator g has infinite order, G = h is infinite cyclic. 

Example. (The integers and the integers mod n are cyclic) Show that Z and Zn for n > 0 are cyclic. Z is an 
infinite cyclic group, because every element is a multiple of 1 (or of −1). For instance, 117 = 117·1. 
(Remember that “117 · 1” is really shorthand for 1 + 1 + · · · + 1 — 1 added to itself 117 times.) In fact, it 
is the only infinite cyclic group up to isomorphism. Notice that a cyclic group can have more than one 
generator. If n is a positive integer, Zn is a cyclic group of order n generated by 1. For example, 1 
generates Z7, since 

+ 1 = 2 1 + 1 + 1 = 3 1 + 1 + 1 + 1 = 4 1 + 1 + 1 + 1 + 1 = 5 1 + 1 + 1 + 1 + 1 + 1 = 6 1 + 1 + 1 + 1 + 1 + 1 + 1 = 
0 

In other words, if you add 1 to itself repeatedly, you eventually cycle back to 0. 



Order of cyclic group: let (G, ∘) be a cyclic group generated by a. The order of group G is 
equal to the order of the element a in G. In other words, |�|=|�|, where |�| denotes the 
order of the element g. Depending upon whether the group G is finite or infinite, we say G to 
be a finite cyclic group or an infinite cyclic group.  

In the above example, (Z4, +) is a finite cyclic group of order 4, and the group (Z, +) is an 
infinite cyclic group. 

 

Order of elements of cyclic group: In a cyclic group of infinite order, identity has order 
1 and all other elements have order . In a cyclic group of order , order of is n 
gcd ( n , k ) . Furthermore, the (distinct) elements which have order are { a d i : 
i ∈ Z n d ∗ } . 

EXAMPLE. 

 

A cyclic group is a group that is generated by a single element. Some examples of cyclic groups include: 
 The group of integers modulo n, denoted Z/nZ, where n is a positive integer. This group is the set of 

integers {0, 1, 2, ..., n-1} with the operation of addition modulo n. 
 The group of units modulo n, denoted (Z/nZ)*, which is the set of integers {1, 2, ..., n-1} that are relatively 

prime to n. 
 The group of complex roots of unity, denoted Cn, where n is a positive integer. This group is the set of 

complex numbers of the form cos(2πk/n) + isin(2πk/n), where k is an integer between 0 and n-1. 
 The group of permutations of a finite set, denoted S_n, where n is a positive integer. This group is the set 

of bijections from a set of n elements to itself, with the operation of composition of functions. 

SOME PROPERTIES AND INTERESTING THEORM ,CONSULTINGCYCLIC 
GROUPS: 

PROPERTIES: 

 If a cyclic group is generated by a, then it is also generated by a-1. 
 Every cyclic group is abelian (commutative). 
 If a cyclic group is generated by a, then both the orders of G and a are the same. 
 Let G be a finite group of order n. If G is cyclic then there exists an element b in G 

such that the order of b is n. 
 Let G be a finite cyclic group of order n and G=<a>. Then G=<ar> if and only if r<n 

and gcd(r, n)=1. Thus the number of generators of a finite cyclic group of order n is 
Φ(n), where Φ is the Euler-Phi function. 

 Every subgroup of a cyclic group is also cyclic. 
 A cyclic group of prime order has no proper non-trivial subgroup. 
 Let G be a cyclic group of order n. Then G has one and only one subgroup of order d 

for every positive divisor d of n. 



 If an infinite cyclic group G is generated by a, then a and a-1 are the only generators of 
G. 

 

 

 

THEORMS: 

1; Theorem 
Let g be an element of a group G and write hgi = {g k : k ∈ Z}. Then hgi is a subgroup of G 

Proof. Since 1 = g 0 , 1 ∈ hgi. Suppose a, b ∈ hgi. Then a = g k , b = g m and ab = g k g m = g k+m. Hence 
ab ∈ hgi (note that k + m ∈ Z). Moreover, a −1 = (g k ) −1 = g −k and −k ∈ Z, so that a −1 ∈ hgi. Thus, , we 
have checked the three conditions necessary for hgi to be a subgroup of G. 

DEFINITION 2. If g ∈ G, then the subgroup hgi = {g k : k ∈ Z} is called the cyclic subgroup of G generated 
by g, If G = hgi, then we say that G is a cyclic group and that g is a generator OF G. 

EXAMPLES. (1) If G is any group then {1} = h1i is a cyclic subgroup of G. (2) The group G = 
{1, −1, i, −i} ⊆ C∗ (the group operation is multiplication of complex numbers) is cyclic with 
generator i. In fact hii = {i 0 = 1, i1 = i, i2 = −1, i3 = −i} = G. Note that −i is also a generator for 
G since h−ii = {(−i) 0 = 1,(−i) 1 = −i,(−i) 2 = −1,(−i) 3 = i} = G. Thus a cyclic group may have 
more than one generator. However, not all elements of G need be generators. For example h−1i = 
{1, −1} 6= G so −1 is not a generator of G. (3) The group G = Z ∗ 7 = the group of units of the 
ring Z7 is a cyclic group with generator 3. Indeed, h3i = {1 = 30 , 3 = 31 , 2 = 32 , 6 = 33 , 4 = 34 
, 5 = 35 } = G   

Note that 5 is also a generator of G, but that h2i = {1, 2, 4} 6= G so that 2 is not a generator of G. (4) G = 
hπi = {π k : k ∈ Z} is a cyclic subgroup of R∗ . (5) The group G = Z ∗ 8 is not cyclic. Indeed, since Z ∗ 8 = {1, 
3, 5, 7} and h1i = {1}, h3i = {1, 3}, h5i = {1, 5}, h7i = {1, 7}, it follows that Z ∗ 8 6= hai for any a ∈ Z ∗ 8 . 

If a group G is written additively, then the identity element is denoted 0, the inverse of a ∈ G is denoted 
−a, and the powers of a become na in additive notation. Thus, with this notation, the cyclic subgroup of 
G generated by a is hai = {na : n ∈ Z}, consisting of all the multiples of a. Among groups that are normally 
written additively, the following are two examples of cyclic groups. 

 (6) The integers Z are a cyclic group. Indeed, Z = h1i since each integer k = k · 1 is a multiple of 1, so k ∈ 
h1i and h1i = Z. Also, Z = h−1i because k = (−k) · (−1) for each k ∈ Z. (7) Zn is a cyclic group under addition 
with generator 1. 



2.THEORMS: Let g be an element of a group G. Then there are two possibilites for the cyclic subgroup of 
G. 

Case 1: The cyclic subgroup hgi is finite. In this case, there exists a smallest positive integer n such that g 
n = 1 and we have (a) g k = 1 if and only if n|k. (b) g k = g m if and only if k ≡ m (mod n). (c) hgi = {1, g, g2 
, . . . , gn−1 } and the elements 1, g, g2 , . . . , gn−1 are distinct. Case 2: The cyclic subgroup hgi is infinite. 
Then (d) g k = 1 if and only if k = 0. (e) g k = g m if and only if k = m. (f) hgi = {. . . , g−3 , g−2 , g−1 , 1, g, g2 
, g3 , . . .} and all of these powers of g are distinct. 

Proof. Case 1. Since hgi is finite, the powers g, g 2 , g 3 , . . . are not all distinct, so let g k = g m with k < 
m. Then g m−k = 1 where m − k > 0. Hence there is a positive integer l with g l = 1. 

Hence there is a smallest such positive integer. We let n be this smallest positive integer, i.e., n is the 
smallest positive integer such that g n = 1.  

 If n|k then k = qn for some q ∈ n. Then g k = g qn = (g n) q = 1q = 1. Conversely, if g k = 1, use the 
division algorithm to write k = qn + r with 0 ≤ r < n. Then g r = g k (g n) −q = 1(1)−q = 1. Since r < n, this 
contradicts the minimality of n unless r = 0. Hence r = 0 and k = qn so that n|k.  

(b) g k = g m if and only if g k−m = 1. Now apply Part (a). 

(c) Clearly, {1, g, g2 , . . . , gn−1 } ⊆ hgi. To prove the other inclusion, let a ∈ hgi. Then a = g k for some k ∈ 
Z. As in Part (a), use the division algorithm to write k = qn+r, where 0 ≤ r ≤ n−1.Then, 

a = g k = g qn+r = (g n ) q g r = 1q g r = g r ∈ {1, g, g2 , . . . , gn−1 } 

which shows that hgi ⊆ {1, g, g2 , . . . , gn−1 }, and hence that 

hgi = {1, g, g2 , . . . , gn−1 }. 

Finally, suppose that g k = g m where 0 ≤ k ≤ m ≤ n − 1. Then g m−k = 1 and 0 ≤ m − k < n. This implies 
that m − k = 0 because n is the smallest positive power of g which equals 1. Hence all of the elements 1, 
g, g2 , . . . , gn−1 are distinct. 

Case 2. (d) Certainly, g k = 1 if k = 0. If g k = 1, k 6= 0, then g −k = (g k ) −1 = 1−1 = 1, also. Hence g n = 1 
for some n > 0, which implies that hgi is finite by the proof of Part (c), contrary to our hypothesis in Case 
2. Thus g k = 1 implies that k = 0 

(e) g k = g m if and only if g k−m = 1. Now apply Part (d). 

(f) hgi = {g k : k ∈ Z} by definition of hgi, so all that remains is to check that these powers are distinct. But 
this is the content of Part (e). 

Recall that if g is an element of a group G, then the order of g is the smallest postive integer n such that 
g n = 1, and it is denoted |g| = n. If there is no such positive integer, then we say that g has infinte order, 
denoted |g| = ∞. By Theorem 3, the concept of order of an element g and order of the cyclic subgroup 
generated by g are the same. 



COROLLARY 4. If g is an element of a group G, then |g| = |hgi|. 

Proof. This is immediate from Theorem 3, Part (c). If G is a cyclic group of order n, then it is easy to 
compute the order of all elements of G. This is the content of the following result.  

THEOREM 3. Let G = hgi be a cyclic group of order n, and let 0 ≤ k ≤ n−1. If m = gcd(k, n), then |g k | = n 
m . 

Proof. Let k = ms and n = mt. Then (g k ) n/m = g kn/m = g msn/m = (g n) s = 1s = 1. Hence n/m divides |g 
k | by Theorem 3 Part (a). Now suppose that (g k ) r = 1. Then g kr = 1, so by Theorem 3 Part (a) n|kr. 
Hence n m | µ k m ¶ r and since n/m and k/m are relatively prime, it follows that n/m divides r. Hence 
n/m is the smallest power of g k which equals 1, so |g k | = n/m.  

THEORM 4: . Let G = hgi be a cyclic group where |g| = n. Then G = hg k i if and only if gcd(k, n) = 1.  

Proof. By Theorem 5, if m = gcd(k, n), then |g k | = n/m. But G = hg k i if and only if |g k | = |G| = n and 
this happens if and only if m = 1, i.e., if and only if gcd(k, n) = 1. 

EXAMPLE If G = hgi is a cyclic group of order 12, then the generators of G are the powers g k where 
gcd(k, 12) = 1, that is g, g 5 , g 7 , and g 11. In the particular case of the additive cyclic group Z12, the 
generators are the integers 1, 5, 7, 11 (mod 12).  

Now we ask what the subgroups of a cyclic group look like. The question is completely answered by 
Theorem 8. Theorem 7 is a preliminary, but important, result. 

THEORM 5: Every subgroup of a cyclic group is cyclic. 

Proof. Suppose that G = hgi = {g k : k ∈ Z} is a cyclic group and let H be a subgroup of G. If H = {1}, then H 
is cyclic, so we assume that H 6= {1}, and let g k ∈ H with g k 6= 1. Then, since H is a subgroup, g −k = (g k 
) −1 ∈ H. Therefore, since k or −k is positive, H contains a positive power of g, not equal to 1. So let m be 
the smallest positive integer such that g m ∈ H. Then, certainly all powers of g m are also in H, so we 
have hg mi ⊆ H. We claim that this inclusion is an equality. To see this, let g k be any element of H (recall 
that all elements of G, and hence H, are powers of g since G is cyclic). By the division algorithm, we may 
write k = qm + r where 0 ≤ r < m. But g k = g qm+r = g qmg r = (g m) q g r so that 

g r = (g m) −q g k ∈ H. 

Since m is the smallest positive integer with g m ∈ H and 0 ≤ r < m, it follows that we must have r = 0. 
Then g k = (g m) q ∈ hg mi. Hence we have shown that H ⊆ hg mi and hence H = hg mi. That is H is cyclic 
with generator g m where m is the smallest postive integer for which g m ∈ H 

THEORM 6: (Fundamental Theorem of Finite Cyclic Groups) Let G = hgi be a cyclic group of order n. 

(a) If H is any subgroup of G, then H = hg d i for some d|n. 
(b) ) If H is any subgroup of G with |H| = k, then k|n. 
(c) If k|n, then hg n/ki is the unique subgroup of G of order k. 



Proof. (a) By Theorem 5, H is a cyclic group and since |G| = n < ∞, it follows that H = hg mi 
where m > 0. Let d = gcd(m, n). Since d|n it is sufficient to show that H = hg d i. But d|m also, so 
m = qd. Then g m = (g d ) q so g m ∈ hg d i. Hence H = hg mi ⊆ hg d i. But d = rm + sn, where r, s 
∈ Z,  
g d = g rm+sn = g rmg sn = (g m) r (g n ) s = (g m) r (1)s = (g m) r ∈ hg mi = H 
This shows that hg d i ⊆ H and hence hg d i = H 
(b) By Part (a), H = hg d i where d|n. Then k = |H| = n/d so k|n 
(c) Suppose that K is any subgroup of G of order k. By Part (a), let K = hg mi where m|n. Then 
Theorem 5 gives k = |K| = |g m| = n/m. Hence m = n/k, so K = hg n/ki. This proves (c). 
Note that hg mi ⊆ hg k i if and only if k|m. Hence the lattice diagram of G is: 
G % - hg 2 i hg 3 i % - % hg 4 i hg 6 i - % h1i 
 
 
 
 
 
APPLICATION: Number Theory. Cyclic groups are found in nature, patterns, and other fields of 
mathematics. A common application of a cyclic group is in number theory. The division 
algorithm is a fundamental tool for the study of cyclic groups. 
Division algorithm for integers: if m is a positive integer and n is any integer, then there exist 
unique integers q and r such that  
n = mq + r and 0 ≤ r < m. 
Find the quotient q and remainder r when 45 is divided by 7 according to the division algorithm. 
The positive multiples of 7 are 7, 14, 21, 28, 35, 42, 49 · · · 
45 = 42 + 3 = 7(6) + 3 
The quotient is q = 6 and the remainder is r = 3. 
You can use the division algorithm to show that a subgroup H of a cyclic group G is also cyclic 
2. A subgroup of a cyclic group is cyclic.  
Proof. Let G be a cyclic group generated by a and let H be a subgroup of G. If H = e, then H =< e > 
is cyclic. If H 6= e, then a n ∈ H for some n ∈ Z +.Let m 
We must show that every b ∈ H is a power of c. Since b ∈ H and H ≤ G , we have b = a n for some 
n. Find a q and r such that 
n = mq + r and 0 ≤ r < m.then,  
a n = a mq+r = (a m) q a r ,so  
a r = (a m) −q a r . 
Since a n ∈ H, am ∈ H and H is a group, both (a m) −q and a n are in H. Thus (a m) −qn ∈ H, then 
a r ∈ H. Since m was the smallest positive integer such that a m ∈ H and 0 ≤ r < m, we must have 
that r = 0. Thus n = qm and 
b = a n = (a m) q = c q , So b is a power of c 
Cyclic Groups in Bell Ringing. Method ringing, known as scientific ringing, is the practice of 
ringing the series of bells as a series of permutations. A permutation f : 1, 2, . . . , n → 1, 2, . . . , 



n, where the domain numbers represent positions and the range numbers represent bells. f(1) 
would ring the bell first and bell f(n) last [6]. The number of bells n has n! possible changes [4]. 
 
The bell ringer cannot choose to ring permutations in any order because some of the bells 
continue to ring up to 2 seconds. Therefore no bell must be rung twice in a row. These 
permutations can all be played until it eventually returns to the original pattern of bells.  
A common permutation pattern for four bells is the Plain Bob Minimus permutation (Figure 8). 
The Plain Bob pattern switches the first two bells then the second set of bells. They would start 
the bell ringing with 1234. The first bell would go to the second position and third would go to 
the fourth; therefore the next bell combination would be 2143. The next bell switch would be 
the two middle bells. Therefore the bell 2143 would turn to 2413. The bell ringers would repeat 
this pattern of switching the first two and second two, followed by switching the middle until 
about 1/3 of the way through the permutations. At the pattern 1324, we cannot switch the 
middle two. If we switched the middle two, we would get back to 1234. Therefore, the bell 
ringers figured out to switch the last two bells every 8 combinations. Then after 24 moves (4!) 
we get back to the bell combination of 1234. Since we made rotations of the bells and 
generated every combination of the set and are now back at the beginning, we can say that the 
bell ringing pattern is cyclic. 

    
Clock Arithmetic. On a clock the numbers cycle from one to twelve. After circulating around the 
clock we do not go to 13 but restart at one. If it was 6 o’clock, what would it be in 9 hour. 
There are other ways to cover all of the permutations without using the Bob Minimus 
method(Figure 9). Bob Minimus method is used because it is easy for bell ringers to accomplish 
because they do not have sheet music. Another common permutation method is following the 
last bell and moving it over one space to the left each ring then after it is on the left moving it 
back over to the right. 



 
You can create a cyclic group with any number of bells. However, the more bells you add the 
longer the cycle will take. Assuming that each bell ring takes 2 seconds, someone can complete 
a set of three bells in 12 seconds. If we have 9 bells it could take up to 8 days and 10 hours [4]. 
The bell permutations can be expressed as a Hamiltonian graph. A Hamiltonian path is a 
undirected or directed graph that visits each vertex exactly once [6]. The Hamiltonian circuit can 
be drawn as a simple circuit that has a circular path back to the original vertex. Hamiltonian 
circuits for the symmetric group Sn mod cyclic groups Zn correspond to the change ringing 
principles on n bells. 
Clock Arithmetic. On a clock the numbers cycle from one to twelve. After circulating around the 
clock we do not go to 13 but restart at one. If it was 6 o’clock, what would it be in 9 hours? 6am 
+ 9 = 3pm. The set of the numbers on a clock are C = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11. This set of 
numbers is a group. The identity element is 0 what we will think of as 12. If we add 12 hours to 
anywhere on the clock we will end up in the same position. 
 
REMARK OR CONCLUTION: The demonstration of the characteristics of cyclic group theory and 
its application shows the importance of cyclic group theory across multiple fields: its 
prominence within number theory in mathematics, uses within cryptography and possible 
applications across many other disciplines. Cyclic groups’ distinctive nature of having one 
generative function allows them to play a pivotal role in observation, extrapolation, and 
implementation. By being generated by only one function and its respective operation, cyclic 
groups have the unique characteristic that they are inherently Abelian since any member of the 
group must be a power of the generative function. Therefore, the binary operation must be 
commutative under any circumstance. As such, this forces all simple cyclic groups to have the 
unique characteristic that they must have a prime cardinality.  
Human minds are designed for pattern recognition and we can find algebraic structures in 
common objects and things around us. Cyclic groups are the simplest groups that have an object 
that can generate the whole set. The object can generate the set by addition, multiplication, or 
rotations. Cyclic groups are not only common in pure mathematics, but also in patterns, shapes, 
music, and chaos. Cyclic groups are an imperative part of number theory used with the Chinese 
remainder theorem and Fermats theorem. Knowing if a group is cyclic could help determine if 
there can be a way to write a group as a simple circuit. This circuit could simplify the process of 



generation to discover the most efficient way to generate the object for use of future 
applications in mathematics and elsewhere. 
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GAME THEORY 
  

 
The game theory is said to be the science of strategies which comes under the 
probability distribution. It determines logical as well as mathematical actions that 
should be taken by the players in order to obtain the best positive outcomes for 
themselves in the game. The games studied in the game theory may range from chess 
to tennis and from child-rearing to takes over. But there is one thing common that 
such an array of games in independent, out-comes for each players depends upon the 
strategies of all. 
 
 
 
 
 
 
 
 
  
 
 
 

In other words, games theory deals with mathematical models of co operation and 
conflict between rational decision marks game theory can be define as the study of 
decision–making in which the players must make strategies affecting the interests of 
other players.  

 
Any time we have a situation with two or more players that involve known payouts or 
quantifiable consequences, we can use game theory to help determine the most likely 
outcomes. Let's start by defining a few terms commonly used in the study of game 
theory: 

• Game: A competitive situation will be called a game. 
• Players: A strategic decision-maker within the context of the game. 
• Strategy: A complete plan of action a player will take given the set of 

circumstances that might arise within the game. 
A strategy may be two types:- 
i)Pure Strategy 
ii)Mixed strategy 

• Optimal Strategy: The course of action which maximizes the profit of a player 
or minimizes his loss is called an optimal strategy. 

• Payoff: The outcome of playing the game is called payoff. 
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• Payoff Matrix: It is a table showing the outcome or payoff of different 

strategies of the game. 
• Equilibrium: The point in a game where both players have made their decisions 

and an outcome is reached. 
• Value of the game: It refers to the expected outcomes par play. When players 

follow their optimal strategy. It is generally denoted by V. 

        Game theoretical concepts have been utilized to analyze problems for millennia, 
long before game theory was a formally-defined field. One interesting example is that 
the Talmud, the Jewish holy book that provides the basis for Jewish law, prescribes 
solutions for allocation of disputed resources that confounded scholars until the 1980s 
when mathematicians Robert Aumann and Michael Maschler solved the problem using 
the tools of modern game theory. As it turns out, the solution given by the Talmud is 
to split the disputed amount equally . Another example is when James Madison 
considered the effects of different taxation systems with game theoretical concepts. 
The list goes on, as conflict resolution and strategic decision-making have been 
important issues throughout all of human history. The first work that brought about 
game theory as a formal field of mathematics was Hungarian mathematician John von 
Neumann’s paper The Theory of Games in 1928. This paper had three major results. 
The first was reducing a game to the cases where each player knows either everything 
or nothing about the other player’s previous moves. He also proved the mini-max 
theorem for two person zero-sum games, and he analyzed three person zero-sum 
games. Economist Oskar Morgenstern connected with von Neumann in 1938, and the 
two then worked together on Theory of Games and Economic Behavior, published in 
1944. This work was huge in the development of game theory. They expanded on von 
Neumann’s previous work with an in-depth analysis of situations where players have 
only partial knowledge of other players’ previous decisions, whereas The Theory of 
Games made the assumption that players knew either everything or nothing about 
previous decisions. They also expanded the definition of payoffs; previously payoffs 
were generally considered to be only monetary, but von Neumann and Morgenstern 
developed the theory of utility, which is still used today in many fields such as 
economics. Since von Neumann and Morgenstern laid the foundation for game theory, 
it has 15 been added to by many mathematicians, such as John Nash in the 1950s. 
However, the main development over the following decades was increasingly 
widespread application to many fields. While certainly important in the field of 
economics, the use of game theory has expanded to extensive use in biology, and it is 
also very important to the development of military strategy. Interestingly, the five 
game theorists who have won the Nobel Prize for economics also worked as advisors 
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to the Pentagon over the courses of their careers. Game theory has also been applied 
in fields such as computer science and moral philosophy.

 
 
1) Non-cooperative versus Cooperative Games  
 

There are two branches of the game theory, viz. cooperative and noncooperative 
game theory. Under the cooperative game theory, groups or sub-sets of the players 
make a binding agreement to reach an outcome that is best for the group as a whole 
and is shared equally among the members. In contrast to this, under non-cooperative 
game theory, players cannot write binding contract. Players are guided by self-interest, 
each player acts as an individual who is normally assumed to maximize his own utility 
without caring about the effects of his choice on other players in the game. The 
outcome of the game, however, is jointly determined by the strategies chosen by all 
players in the game. As a result, each player's welfare depends, in part, on the 
decisions of other players in the game. An example of cooperative game is two firms 
negotiating a joint investment to develop a new technology. An example of non-
cooperative game is two competing firms taking into account each other’s behavior 
when setting their prices independently. Self-interested behavior does not always lead 
to an outcome that is best for the players as a group. This we will come across when 
we discuss different illustrations of the games. Non-cooperative game theory is more 
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widely used by economist; nevertheless, cooperative game theory has been used to 
model bargaining games and political processes. 
 

 

 

2)Perfect vs Imperfect Information 
 
Games of imperfect information have information hidden from players during the 
game.  And, although games of perfect information have all information shown during 
a game, the need for strategy in the game doesn’t necessarily differ between the two. 

Perfect information games such as chess, backgammon, and go require a decent 
amount of thought and strategy to play.  Players have to process what they see on the 
board and determine what their opponent is likely to do while working towards the 
ultimate goal of winning.  On the other hand, perfect information games such as candy 
land, mousetrap, and tic-tac-toe don’t need practically any strategy to play.  Players 
simply have to roll a die or pick up a card and move their piece to a set space.  Even a 
game like tic-tac-toe, where there is arguably a strategy involved, has practically no 
real thought put into the game. 

Imperfect information games such as poker, 20 questions, and rummy require thought 
and strategy to play.  Players have to take into account the information that they have 
been given already to try to figure out how they should act next in order to win. 
 Where imperfect information games such as guess who, apples to apples, and go-fish 
don’t really require much strategy to play.  Although there is arguably some strategy 
to these games, the players don’t have to do much other than ask a question or seeing 
a card and getting rid of some of your hand as a response. 

 

 

 

A Game of imperfect information the dotted line represent ignorance or the part of player2 from   called an 
information set 
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3)Simultaneous-move versus Sequential-move 
Games  
The order of moves is significant in the game theory. Players in a game may move 
simultaneously or sequentially which in turn results in different outcomes of the game. 
A simultaneous-move game is a game in which neither player knows the other’s action 
when moving, that is, players take their action simultaneously without knowing the 
action that have been chosen by the other player(s). For instance, in Cournot model of 
oligopoly, each firm decides its profit maximizing levels of output simultaneously. In 
contrast, in sequential-move games, the order of moves comes into picture. In this 
case, one player moves first which is then observed by his opponent. The player(s) 
who moves afterwards gets to observe and learn information about the course of the 
game up to that point, including what actions other players have chosen. These 
observations can then be used by that player to decide his (her) own optimal 
strategies than simply choosing an action. This way, strategies of the players depend 
on what the other player(s) before have done already. 

 

 

 

 

4) Zero-sum versus Non-Zero Sum Games  

A zero-sum game is the one in which the gain of one player comes at the expense of 
the other player and is exactly equal to the loss of the other player. In other words, the 
sum of the payoffs of the two players always adds to zero. An economic application 
can be the transaction between a buyer and a seller at the cost price. A non-zero sum 
game is when gain or loss does not come at the expense of the other player. An 
example of this might arise if increased advertisement leads to higher profits for both 
the firms. 

 Husband 
 Boxing Match   Ballet   

Wife   
Boxing Match   2, 3 1, 1 

Ballet 1, 1 3, 2 
                                                        The Battle of the Sexes is a simple example of a typical non-zero-sum game 
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5)Symmetric vs Asymmetric Games 

The main feature of symmetric game is that all the players in these games adopt the 
same strategies. This is usually applicable in the short duration games because in the 
long duration games the players get a more number of options. In symmetric games 
the decisions do not depend upon the players, in fact, it is best on based on the types 
of strategies used. The decisions in the symmetric games remain the same even if the 
players are interchanged the game. The prisoner’s dilemma is the prominent example 
of the symmetric games. This example is discussed further in this article. In the case of 
asymmetric games, the decisions depend upon the player. In these games, if a 
particular strategy provides benefit to one players, other players will also get equal 
benefits. A prominent example of asymmetric games is the decision of the company to 
enter the new market. 

 

 

 

 

      The games studied in game theory are well-defined mathematical objects. The 
games studied in game theory are well-defined mathematical objects. 

Extensive form:- 

The extensive form can be used to formalize games with a time sequencing of moves. 
Extensive form games can be visualized using game trees (as pictured here). Here 
each vertex (or node) represents a point of choice for a player. The player is specified 
by a number listed by the vertex. The lines out of the vertex represent a possible 
action for that player. The payoffs are specified at the bottom of the tree. 
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The game pictured consists of two players. The way this particular game is structured 
(i.e., with sequential decision making and perfect information), Player 1 "moves" first 
by choosing either F or U (fair or unfair). Next in the sequence, Player 2, who has now 
observed Player 1's move, can choose to play either A or R. Once Player 2 has made 
their choice, the game is considered finished and each player gets their respective 
payoff, represented in the image as two numbers, where the first number represents 
Player 1's payoff, and the second number represents Player 2's payoff. Suppose 
that Player 1 chooses U and then Player 2 chooses A: Player 1 then gets a payoff of 
"eight" (which in real-world terms can be interpreted in many ways, the simplest of 
which is in terms of money but could mean things such as eight days of vacation or 
eight countries conquered or even eight more opportunities to play the same game 
against other players) and Player 2 gets a payoff of "two". 

Normal Form:- 

 

 

 

 

 

 

The normal game is usually represented by a matrix which shows the players, 
strategies, and payoffs (see the example to the right). More generally it can be 
represented by any function that associates a payoff for each player with every 
possible combination of actions. In the accompanying example there are two players; 
one chooses the row and the other chooses the column. Each player has two 
strategies, which are specified by the number of rows and the number of columns. The 
payoffs are provided in the interior. The first number is the payoff received by the row 
player (Player 1 in our example); the second is the payoff for the column player (Player 
2 in our example). Suppose that Player 1 plays Up and that Player 2 plays Left. Then 
Player 1 gets a payoff of 4, and Player 2 gets 3. 

       Game theory can be defined as the study of mathematical models of conflict and 
cooperation between intelligent and rational decision makers .Game-theory concepts 
apply in economy, sociology, biology, and health care, and whenever the actions of 
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several agents (individuals, groups, or any combination of these) are interdependent. 
We present a new command game to represent the extensive form (game tree) and 
the strategic form (payoff matrix) of a non-cooperative game and to identify the 
solution of a nonzero and zero-sum game through dominant and dominated 
strategies, iterated elimination of dominated strategies, and Nash equilibrium in pure 
and fully mixed strategies. Further, game can identify the solution of a zero-sum game 
through max-min criterion and the solution of an extensive form game through 
backward induction.

Strategic game:- 

           Whenever the strategy spaces of the players are discrete (and finite), the game 
can be represented compactly as a matrix. In such a game, player 1 has R possible 
actions, and player 2 has C possible actions; the payoff pairs to any strategy 
combination can be neatly arranged in an R×C table; and the game is easily analyzable 
(table 1). A payoff is a number, also called a utility, that reflects the desirability of an 
outcome to a player, for whatever reason. We denote the set of strategies for player 1 
and player 2 with S1 = (1, 2, . . . , r, . . . , R) and S2 = (1, 2, . . . , c, . . . , C). The numbers 
of S1 and S2 may have labels. There are two elements (u1rc; u2rc) within each cell of 
the table. The first subscript takes only two values (1, 2) and simply denotes player 1 
or player 2. The subscripts r and c denote, respectively, the strategies played by player 
1 and player 2. Thus u1rc is the payoff for player 1 when player 1 chooses strategy r 
and player 2 chooses strategy c, whereas u2rc is the payoff for player 2 when player 1 
chooses strategy r and player 2 chooses strategy c. Many methods are available to 
seek the solution of the game. We start analyzing the game by collecting the maximum 
payoffs and their related subscripts for each player given the choice of the other 
player into lists of numbers. 

 

Let’s define the maximum payoff MU1rc of player 1 if player 2 plays strategy c as the 
highest value on the left side of column c Formally, 
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ܯ  ଵܷ = max {ݑଵଵ , ,ଵଶݑ … … . . , ଵݑ … . .  ଵோ}                with c = 1, 2,...,Cݑ

 Let’s define the maximum payoff MU2rc of player 2 if player 1 plays strategy r as the 
highest value on the right side of the row r. Formally,  

MU2rc = max {u2r1, u2r2,...u2rc ...,u2rC }                 with r = 1, 2,...,R  

We create a list, SMU1, of C elements containing the subscripts r of all maximum 
payoffs MU1rc for player 1 and a list, SMU2, of R elements containing the subscripts c of 
all maximum payoffs MU2rc for player 2. Furthermore, we create a list, SU1, of 
subscripts for all possible strategies of player 1 (1, 2, . . . , R) and a list, SU2, of 
subscripts for all possible strategies of player 2 (1, 2, . . . , C). These lists of numbers are 
useful for seeking the solution of a general R by C payoff matrix. 

Nash’s equilibrium in pure and fully mixed strategies:- 

       Another way to find the solution of the game is through Nash’s equilibrium in pure 
and fully mixed strategies. A Nash equilibrium, also called a strategic equilibrium, is a 
list of strategies, one for each player, which has the property that no player has 
incentive to deviate from his strategy and get a better payoff, given that the other 
players do not deviate. A mixed strategy is a strategy generated at random according 
to a particular probability distribution that determines the player’s decision. As a 
special case, a mixed strategy can be a deterministic choice of one of the given pure 
strategies. A Nash equilibrium in pure strategy specifies a strategy for each player in 
such a way that each player’s strategy yields the player at least as high a payoff as any 
other strategy of the player, given the strategies of the other player. Based on our 
notation, we can say that Nash equilibriums in pure strategies are all pairs of strategies 
for which MU1rc and MU2rc have the same pairs of subscripts r and c. In other words, 
we proceed in two steps: first, we determine the best response; and second, we find 
the strategy profiles where strategies are best responses to each other. See section 6 
for a worked example. A Nash equilibrium in mixed strategy specifies a mixed strategy 
for each player in such a way that each player’s mixed strategy yields the player at 
least as high an expected payoff as any other mixed strategy, given the mixed 
strategies of the other player. Fully mixed strategies mean that the probability 
associated with each strategy cannot be equal to zero or one. The command game can 
find Nash equilibrium in fully mixed strategies if R = 2 and C = 2 (table 2) 
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Player 1 would be willing to randomize between S1=(1) and S1=(2) only if these 
strategies gave him the same expected utility. More formally, we seek the probability 
p so that both sides of (1) are equal.  

p × u111 + (1 − p) × u112 = p × u121 + (1 − p) × u122 …………………………………………(1)   

Thus player 2’s strategy in the equilibrium must be equal to  

 p × S2(1) + (1 − p) × S2(2) 

To make player 1 willing to randomize between S1(1) and S1(2). S1(1) and S1(2) indicate 
the strategies for player 1, while S2(1) and S2(2) indicate the strategies for player 2. 
Similarly, player 2 would be willing to randomize between S2 = (1) and S2 = (2) only if 
these strategies give him the same expected utility. Again we seek the probability q 
such that both sides of (2) are equal.  
q × u211 + (1 − q) × u221 = q × u212 + (1 − q) × u222 ………………………………………(2)  
Thus player 1’s strategy in the equilibrium must be equal to  
q × S1(1) + (1 − q) × S1(2)  
to make player 2 willing to randomize between S2(1) and S2(2). The Nash equilibrium 
in fully mixed strategies must be equal to (3).  
{p × S2(1) + (1 − p) × S2(2), q × S1(1) + (1 − q) × S1(2)} ……………………………………….(3)  
We find the solution of (1) and (2) by using explicit formulas. 
Solution of 2×2 Ractangular Games without a saddle point:- 

Let us consider a 2×2 two – person Zero-sum game without any saddle point having 

the following pay-off matrix for the row player A. 

                                            Player-B 
 ଶܤ                ଵܤ                                       

Player-A       
ଵଵ ଵଶ
ଶଵ ଶଶ

 
  Since this pay-off matrix has no saddle point so, both A & B have to apply mixed 

strategy. 

  Let ଵܲ, ଶܲ be the probabilities for selecting the strategies ܣଵ ܽ݊݀ ܣଶ respectively for 

the player-A and ݍଵ,  ଶ respectively forܤ ଵܽ݊݀ܤ ଶ be those for selecting the strategiesݍ

the player- B. 
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  Then, ଵ + ଶ  = 1 = ଵݍ +  ଶ                               ………………………………………(i)ݍ

  Now, for the player A, the expected gain for selecting the strategy B1 by the player B 

is 

     ܽଵଵଵ +  ܽଶଵଶ 

and those for the strategy B2 is  

    ܽଵଶଵ + ܽଶଶଶ 

  Now, for the player A, 

    ܽଵଵଵ +  ܽଶଵଶ = ݒ = ܽଶଵܽଵ + ܽଶଶଶ                   …………………………………………(ii) 

  Similarly for the player-B, and optimal strategy, then, 

    ܽଵଵݍଵ + ܽଵଶݍଶ = ݒ = ܽଶଵݍଵ + ܽଶଶݍଶ                     …………………………………………(iii) 

  Form (ii) and (iii), we get, 

          
భ
మ

మమିమభ
భభିభమ

   

 And  
భ
మ

మమିమభ
భభିభమ

 

 Now using (i), we get, 

ଵ          = మమିమభ
(భభାమమ)ି(భమାమభ)

 

ଶ         = 1 −  ଵ

                = భభିభమ
(భభାమమ)ି(భమାమభ)

 

 And similarly, 

ଵݍ         = మమିభమ
(భభାమమ)ି(భమାమభ) 

ଶݍ         = 1 −  ଵݍ
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ଶݍ          = భభିమభ
(భభାమమ)ି(భమାమభ)

 

 In this case, the value of the game will be 

ݒ          = ܽଵଵଵ + ܽଶଵଶ 

               = భభమమିభమమభ
(భభାమమ)ି(భమା మభ) 

  For a game with 2×2 pay-off matrix with a saddle point, the value of ݒ may not be 

correctly obtained by using formula. 

Graphical method of solution of 2×n or m×2 games :-  
  When the pay-off matrix of a two –person zero sum games of size 2×n of m×2 when 
in the game, one of the two players has only two pure strategies and also when the 
game has no saddle point solution the graphical method is a very used full method for 
solving such problems using this method any 2×n or m×2 pay-off matrix can be 
reduce to a 2×2 matrix and ultimately it can be solved by algebraic method. 
    Let us consider the following 2×n pay-off matrix of a game without a saddle point:- 

ଵ ଶ ଷ 
ଵ ଵଵ ଵଶ ଵଷ ଵ
ଶ ଶଵ ଶଶ ଶଷ ଶ

 

     

Let a mixed strategy of the row-player A be given by (ଵ, ଵ ,ଶ)  where + ଶ = 1, 
ଵ ≥ 0 and ଶ ≥ 0. Now, for each of the pure strategies available to the column-
player-B, the expected pay-off for the player-A will as follows : 

B’s Pure Strategies A’s Expected pay-off E() 
 ଵܤ

 
 

 ଶܤ
 
: 
 
 

 ܤ

()ଵܧ = ܽଵଵଵ + ܽଶଵଶ = ܽଵଵଵ + ܽଶଵ(1 − (ଵ
= (ܽଵଵ − ܽଶଵ)ଵ + ܽଶଵ 

 
()ଶܧ = (ܽଵଶ − ܽଶଶ)ଵ + ܽଶଶ 
 
::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

 
 

()ܧ = (ܽଵ − ܽଶ)ଵ + ܽଶ 
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 Now, it is obvious that B would like to select that pure strategy Bj against A’s move for 
which Ej(p) will be minimum, j = 1,2,…,n. Let us denote this minimum expected Pay –
off for A by 

ݒ                          = ,ൟ()ܧ൛ ݊݅ܯ ݆ = 1,2, … , ݊ 

    The player-A will try to select p1 and (hence) p2 in such a way that ݒ will be as large 
as possible. This may be done by plotting the straight lines. 

()ܧ                         = ൫ܽଵ − ܽଶ൯ଵ + ܽଶ, ݆ = 1,2, … … , ݊ 

As linear functions of p1. 

     Again since, 0 ≤ ଵ ≤ 1, so 

()ܧ            = ܽଶ, ଵ ℎ݁݊ݓ = 0   

                      = ܽଵ, ଵ ℎ݁݊ݓ = 1, 

And hence, Ej(p) represents a line segment joining the points (0,a2j) and (1,a1j). 

    To represent thus line segment graphical ,we first draw two parallel vertical line ,the 
distance between then being one unit of length . The first one represent the line p1=0 
and the second one represent the line p1 =1 . Now ,we draw the line segment joining 
the point (0,a2j) and(1,aij) j=1,2,………..,n .the lower bounded of these line will from a 
lower envelops and will give the minimum expected pay-off for the row-player as a 
function of p1. The highest point on this lower envelope will given maximum expected 
pay off among the minimum expected pay-off of the row-player A and the optimal 
value of his probabilities (p1,p2). In this way we may get two strategies for the column-
player B corresponding to the two lines passing thought the maximum point of the 
lower envelops. This helps us to reduce the size of the pay-off matrix to 2×2 and which 
ultimately can be solved by algebraic method. 

 

  

 

 

 

 

                                                  LOWER ENVELOP 
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    The m×2 game can similarly be treated. In this case; we consider the lower point of 
the upper envelope to get two strategies for the row – player-A and the optimal value 
of the probabilities (q1,q2) of the column player-B. 

 

 

 

 

 

 

                                              

                                              UPPER ENVELOP 

 

Economic :- Game theory ,being concerned with the behavior of decision makers and 
their interactions ,seems to have limited applicability in economics. 

Price war 

This is a similar outcome but for two firms that can keep prices high and stable or start 
a price war. The best outcome for both firms is (a) $40, $40. 
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 However, when prices are stable, if one firm cuts prices (starts price war) it will see 
profits rise to $60. However, the other firm who keeps prices high will lose market 
share and get zero profits. Therefore, the firm who loses out will almost certainly 
retaliate and the outcome will move to (d) with both firms just making $3 profit. 
Therefore, there is strong incentive to avoid price war. 

• Co-ordination playoff 
 

 

 

 

 

 

 

 

 
• In this example, if neither firms invest, they will make $50 each. However, if they 

both invest in new technology, which will become new market standard, they 
will both get substantially better pay off (a) with $200 each. 

• However, if one firm invests in new technology and the other doesn’t, then they 
will be left with $0 (it is not widely shared). In this case, the firm will probably 
start investing too, as they would be better off. 

• However, the key thing is whether one firm is willing to take the plunge and 
make zero profits in the short-run. It may not be able to afford this outcome. 

• The issue with this game theory dilemma is that there are strong rewards from 
co-operating. But, in the real world, for various reasons, co-operation may not 
be there. 

Matching pennies 

 

 

  

 

 

 
 

 



Page - 16 

 
• This is a game with two players. They both put a penny on the table. 
• If the pennies are Heads/heads or tails/tails – then Player A wins both pennies. 

He gains 1, (player B loses 1) 
• If the pennies are mixed (heads/tails) or tails/heads then play B wins both 

pennies. 
• This is an example of a zero-sum game – the net benefit is always zero. For 

everyone who gains, there is an equal and opposite loss. 
 

Zero-sum game 

 

 
 

 

 

 

 

 

       In this situation, we have another zero-sum game situation. If a firm enters or 
leaves, there is always a net benefit of zero. 
For firm A, its dominant strategy is to enter the market, because 1 is greater than -2. 
        For firm B, its dominant strategy is also to enter the market because -1 is greater 
than -3. Firm B would prefer both firms to leave the market so it can get to zero. But, 
in this model, it can’t do that because it know if A enters, it will have to enter or face 
the costs of -3. 
Tariff or trade war 
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• In this case, if both countries, pursue low tariffs, the outcome is £3m net welfare 
for each country. If A places tariff, then its net welfare will be £2m, and country 
B who keeps low tariffs will make £1.5m. 

• If B retaliates and places tariffs on too, it will make itself worse of – welfare falls 
to £1m, but it will effectively punish A whose welfare falls from £2m to £1m. 

• If firms wish to maximize welfare, they would stick to low tariffs. That is their 
dominant strategy and nash equilibrium. 

• However, in the real world, there may be political pressures (e.g. protect 
domestic industry, even at expense of higher prices for consumers, which 
encourages countries to place tariffs. 

 

Prisoner’s dilemma 

 

 

 

 

 

 

 

 

The prisoner’s dilemma is a classic example of game theory. 
 

• There are two prisoners held in solitary confinement. They can either confess to 
crime or stay silent (not confess) 

• If both stay silent, they both get light sentence of 1 year. 
• If they both confess, they get 5 years each. 
• However, if one confesses to the crime and betrays the other, then the one who 

confesses is given immunity for giving information. But the other who remained 
silent gets 20 years. 

• Therefore, a prisoner would only choose to remain silent, if they can guarantee 
the other prisoner will remain silent. 

• The dominant strategy for both players is to confess. At worst they will get 5 
years, at best they will get 0 years. 

• The Nash equilibrium is confess/confess (5 years each). Because if a player acted 
unilaterally, it would be worse off. 
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Decision Tree 
            
             Another way of describing game theory is through a decision tree. 

 
• In this example, Firm A can choose to enter or leave. Firm B (the incumbent can 

then decide to fight (cut prices) or accommodate. 
• If it fights, both firms make a lost (-4, -3). Therefore the dominant strategy for 

Firm B appears to be accommodate, leaving both firms with (1,1) 
• However, firm B may make the calculation that it is worth making a temporary 

loss, in order to try and force the new firm out of business. Also, if firm B fights, 
it may deter other entrants. 

  
Dominant strategy 

         A dominant strategy occurs when there is an optimal choice of strategy for each 
player no matter what the other does. 

 

 
 

 
 

• If P2 chooses left  P1 will choose UP 
• If P2 chooses right P1 will choose UP 
• Therefore UP is a dominant strategy for P1 
• P2 will always choose right no matter what P1 does 
• The unique equilibrium is (up, left). This is best for both. 
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Nash Equilibrium 

        A Nash equilibrium occurs when the payoff to player one is the best given the 
other’s choice. 

 

 
 
 
 
 

• In this case If P1 chooses down, P2 will choose right 
• If P1 choose UP, P2 will choose right. But, if P2 choose right, P1 will want to 

choose down. 
• The Nash equilibrium will be downright, (5,5) despite UP left being the optimal 

Pareto outcome. 
  
Evolutionary:- 
     Evolutionary Game theory is the application of Game theory to evolving population 
in biology. 
 
Hawk Dove 
 
❖ Payoff matrix for hawk dove game 

 
 

 Meets hawk Meets dove 
If hawk V/2 – C/2 V 
If dove 0 V/2 

 

Given that the resource is given the value V, the damage from losing a fight is given 
cost C:- 

• If a hawk meets a dove, the hawk gets the full resource V 
• If a hawk meets a hawk, half the time they win, half the time they lose, so the 

average outcome is then V/2 minus C/2 
• If a dove meets a hawk, the dove will back off and get nothing – 0 
• If a dove meets a dove, both share the resource and get V/2 

The actual payoff, however, depends on the probability of meeting a hawk or dove, 
which in turn is a representation of the percentage of hawks and doves in the 
population when a particular contest takes place. 
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Social Behaviour 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

         Games like hawk dove and war of attrition represent pure competition between 
individuals and have no attendant social elements. Where social influences apply, 
competitors have four possible alternatives for strategic interaction. This is shown on 
the adjacent figure, where a plus sign represents a benefit and a minus sign represents 
a cost. 

• In a cooperative or mutuality relationship both "donor" and "recipient" are almost 
indistinguishable as both gain a benefit in the game by co-operating, i.e. the pair 
are in a game-wise situation where both can gain by executing a certain strategy, or 
alternatively both must act in concert because of some encompassing constraints 
that effectively puts them "in the same boat". 

• In an altruistic relationship the donor, at a cost to them self provides a benefit to 
the recipient. In the general case the recipient will have a kin relationship to the 
donor and the donation is one-way. Behaviors where benefits are donated 
alternatively (in both directions) at a cost, are often called "altruistic", but on 
analysis such "altruism" can be seen to arise from optimized "selfish" strategies. 

• Spite is essentially a "reversed" form of altruism where an ally is aided by damaging 
the ally's competitors. The general case is that the ally is kin related and the benefit 
is an easier competitive environment for the ally. Note: George Price, one of the 
early mathematical modelers of both altruism and spite, found this equivalence 
particularly disturbing at an emotional level. 

• Selfishness is the base criteria of all strategic choice from a game theory 
perspective – strategies not aimed at self-survival and self-replication are not long 
for any game. Critically however, this situation is impacted by the fact that 
competition is taking place on multiple levels – i.e. at a genetic, an individual and a 
group level. 
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Description and Modeling:- 
        The primary use of game theory is to describe and model how human populations 
behave. Some scholars believe that by finding the equilibrium of games they can 
predict how actual human populations will behave when confronted with situations 
analogous to the game being studied. This particular view of game theory has been 
criticized. It is argued that the assumptions made by game theorists are often violated 
when applied to real-world situations. Game theorists usually assume players act 
rationally, but in practice, human rationality and/or behavior often deviates from the 
model of rationality as used in game theory. Game theorists respond by comparing 
their assumptions to those used in physics. Thus while their assumptions do not 
always hold, they can treat game theory as a reasonable scientific ideal akin to the 
models used by physicists. However, empirical work has shown that in some classic 
games, such as the centipede game, guess 2/3 of the average game, and the dictator 
game, people regularly do not play Nash equilibrium. There is an ongoing debate 
regarding the importance of these experiments and whether the analysis of the 
experiments fully captures all aspects of the relevant situation. 

Game Theory in Politics:-  

       Game theory is widely used in political affairs, which is focused on the areas of 
international politics, war strategy, war bargaining, social choice theory, Strategic 
voting, political economy etc. Game theory is an effective tool in the hands of 
diplomats and politicians to analysis any situation of conflict between individuals, 
companies, states, political parties. Rationality of actors and the choice of strategies 
are one of the basic assumptions of game theory. Game theory seems to be useful tool 
for research on terrorism because it captures the interaction between attacked subject 
and terrorist organization, when the steps are interdependent and therefore cannot 
be analyzed separately (Sandler and Arce M, 2003).  
     By using Prisoner’s dilemma, we will focus situation where governments choose 
between active and reactive counter terrorism policies.  
      Let, There are two countries- Bangladesh and India. Both countries face common 
threat of terrorist attacks, and both must agree on whether or not to jointly apply 
active counter- terrorism policy. 
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      We assumed that active policy for individual countries gains benefits of 6 and costs 
of 8 for country that applied active policy. If the India is applying active policy and the  
Bangladesh will be the state that will only get benefits associated with it, then 
Bangladesh will have the advantages of the 6. India gets -2 (6-8). Cost of 8 shall be 
deducted from the benefits of 6. Otherwise, if the India is a free-rider, the benefits  
are reversed.  
     If both countries are active policy, then everyone gets the benefit of -4 (8- 2×6).  
     The result is prisoner’s dilemma game, in which no country wants to apply active 
counter-terrorism policy. 
 
Biology:- 
      In biology, game theory has been used as a model to understand many different 
phenomena. It was first used to explain the evolution (and stability) of the 
approximate 1:1 sex ratios. (Fisher 1930) suggested that the 1:1 sex ratios are a result 
of evolutionary forces acting on individuals who could be seen as trying to maximize 
their number of grandchildren. 

Additionally, biologists have used evolutionary game theory and the ESS to explain the 
emergence of animal communication. The analysis of signaling games and other 
communication games has provided insight into the evolution of communication 
among animals. For example, the mobbing behaviour of many species, in which a large 
number of prey animals attack a larger predator, seems to be an example of 
spontaneous emergent organization. Ants have also been shown to exhibit feed-
forward behavior akin to fashion.  

 

 

 

 

 

 
  

     American crows (Corvus brachyrhynchos) mobbing          The occurrence of mobbing behavior across widely different taxa,                

          a red-tailed hawk (Buteo jamaicensis)                including California ground squirrels, is evidence of convergent evolution 

Biologists have used the game of chicken to analyze fighting behavior and territoriality.  

According to Maynard Smith, in the preface to Evolution and the Theory of Games, 
"paradoxically, it has turned out that game theory is more readily applied to biology 
than to the field of economic behavior for which it was originally designed". 
Evolutionary game theory has been used to explain many seemingly incongruous 
phenomena in nature.  
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      One such phenomenon is known as biological altruism. This is a situation in which 
an organism appears to act in a way that benefits other organisms and is detrimental 
to itself. This is distinct from traditional notions of altruism because such actions are 
not conscious, but appear to be evolutionary adaptations to increase overall fitness. 
Examples can be found in species ranging from vampire bats that regurgitate blood 
they have obtained from a night's hunting and give it to group members who have 
failed to feed, to worker bees that care for the queen bee for their entire lives and 
never mate, to vervet monkey that warn group members of a predator's approach, 
even when it endangers that individual's chance of survival. All of these actions 
increase the overall fitness of a group, but occur at a cost to the individual. 

 
 

 

 

 

 

                    
            Adult vervet monkey                            The co-operative behaviour of social insects like the honey bee can be                     

                                                                                 explained by kin selection. 

       Evolutionary game theory explains this altruism with the idea of kin selection. 
Altruists discriminate between the individuals they help and favor relatives. Hamilton's 
rule explains the evolutionary rationale behind this selection with the equation c < b × 
r, where the cost c to the altruist must be less than the benefit b to the recipient 
multiplied by the coefficient of relatedness r. The more closely related two organisms 
are causes the incidences of altruism to increase because they share many of the same 
alleles. This means that the altruistic individual, by ensuring that the alleles of its close 
relative are passed on through survival of its offspring, can forgo the option of having 
offspring itself because the same number of alleles are passed on. For example, 
helping a sibling (in diploid animals) has a coefficient of 1⁄2, because (on average) an 
individual shares half of the alleles in its sibling's offspring. Ensuring that enough of a 
sibling's offspring survive to adulthood precludes the necessity of the altruistic 
individual producing offspring. The coefficient values depend heavily on the scope of 
the playing field; for example if the choice of whom to favor includes all genetic living 
things, not just all relatives, we assume the discrepancy between all humans only 
accounts for approximately 1% of the diversity in the playing field, a coefficient that 
was 1⁄2 in the smaller field becomes 0.995. Similarly if it is considered that information 
other than that of a genetic nature (e.g. epigenetic, religion, science, etc.) persisted 
through time the playing field becomes larger still, and the discrepancies smaller. 
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Philosophy:- 
    Game theory has been put to several uses in philosophy. Responding to two papers 
by W.V.O. Quine (1960, 1967), Lewis (1969) used game theory to develop a 
philosophical account of convention. In so doing, he provided the first analysis 
of common knowledge and employed it in analyzing play in coordination games. In 
addition, he first suggested that one can understand meaning in terms of signaling 
games. This later suggestion has been pursued by several philosophers since 
Lewis. Following Lewis (1969) game-theoretic account of conventions, Edna Ullmann-
Margalit (1977) and Bicchieri (2006) have developed theories of social norms that 
define them as Nash equilibria that result from transforming a mixed-motive game 
into a coordination game.  

    Game theory has also challenged philosophers to think in terms of 
interactive epistemology: what it means for a collective to have common beliefs or 
knowledge, and what are the consequences of this knowledge for the social outcomes 
resulting from the interactions of agents. Philosophers who have worked in this area 
include Bicchieri (1989, 1993), Skyrms (1990), and Stalnaker (1999).  

    In ethics, some (most notably David Gauthier, Gregory Kavka, and Jean Hampton)[ 
authors have attempted to pursue Thomas Hobbes' project of deriving morality from 
self-interest. Since games like the prisoner's dilemma present an apparent conflict 
between morality and self-interest, explaining why cooperation is required by self-
interest is an important component of this project. This general strategy is a 
component of the general social contract view in political philosophy (for examples, 
see Gauthier (1986) and Kavka (1986)).  

    Other authors have attempted to use evolutionary game theory in order to explain 
the emergence of human attitudes about morality and corresponding animal 
behaviors. These authors look at several games including the prisoner's dilemma, stag 
hunt, and the Nash bargaining game as providing an explanation for the emergence of 
attitudes about morality. 

Rock paper scissors game theory:-  

       Nash Equilibrium is a pair of strategies in which each player’s strategy is a best 
response to the other player’s strategy. In a game like Prisoner’s Dilemma, there is one 
pure Nash Equilibrium where both players will choose to confess. However, the 
players only have two choices: to confess or not to confess. 

 

 
 
 
 
 
 
 



Page - 25 

 
 
    What happens if there are more choices? For example, in the classic game of rock, 
paper, and scissors, there are three choices. How can we find the Nash Equilibrium 
then? And if we do, is it helpful? See the following article: In the above article, the 
author discusses the application of Nash Equilibrium to games like Rock, Paper, and 
Scissors. Recall from class that in game theory, games can have: (1) Only one pure 
Nash Equilibrium (e.g. in Prisoner’s Dilemma) (2) Only one mixed Nash Equilibrium 
and no pure Nash Equilibrium (e.g. Kicker/Goalie Penalty kicks) (3) Multiple pure 
Nash Equilibrium (e.g. Hawk-Dove Game) (4) Pure and mixed (e.g. Hawk-Dove 
Game) So which category does the game Rock, Paper, and Scissors fall under?  

 
 

 

 

 

 

 

 

According to the article, Rock, Paper, and Scissors fall under (2) – only one mixed 
Nash Equilibrium. However, you can easily arrive at this conclusion by applying your 
knowledge of game theory and Nash equilibrium – all topics we learned in INFO 2040. 

 Let p = player one and q = player two. (For the sake of simplicity, there will only 
be two players) First, the reason why there isn’t a pure Nash Equilibrium is that there 
is no way a player will 100% of the time choose one choice. For example, let’s take 
player 1. If he consistently plays rock, then player 2 will always choose paper. Player 
one will never win. Likewise, if player 2 always choose paper, player one will always 
choose scissors. Player two will always lose. The two players will then fall into a cycle 
of rock, then paper, then scissors. Thus, there is no equilibrium – it just doesn’t make 
sense for one player to ALWAYS pick one choice for the whole game – it’s just too 
predictable. Now let p(rock) be the probability that player 1 pick rock, p(scissors) be 
the probability that player 1 pick scissors, and p(paper) be the probability that player 1 
chooses paper. Likewise, q(rock), q(scissors), and q(paper) for player 2. We know that 
none of these probabilities is fully a 1 (always choose).  

The expected value for player 2 is:  

EV[q(rock)] = 0*p(rock) + (-1)*p(paper) + 1* (p(scissors))  
EV[q(paper)] = 1*p(rock) + 0*p(paper) + (-1)*(p(scissors))  
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EV[q(scissors)] = (- 1)*p(rock) + 1*p(paper) + 0*(p(scissors))  
Also, p(rock) + p(paper) + p(scissors) = 1  
Using these equations, you will eventually reach that the Nash Equilibrium for 

the game Rock, Paper, and Scissors is:  
For player 1,  
p(rock) = 1/3, p(paper) = 1/3, and p(scissors) = 1/3 and  
similarly, For player 2,  
q(rock) = 1/3, q(paper) = 1/3, and q(scissors) = 1/3  
So that’s the Nash Equilibrium. 

 
 

 

 

 

 

 

 

 

But how useful is it? Why Nash Equilibrium may not apply to a game like Rock, 
Paper, and Scissors There is another major difference between a game like Prisoner’s 
Dilemma and Rock, Paper, and Scissors (besides the number of choices) and that is: 
The players will play again and again. In Prisoner’s Dilemma, they play one round and 
so they must pick the dominant strategy in that game, but in Rock, Paper, and Scissors, 
the two players repeatedly play. The article states that in such a case, it’s best for the 
players to stick to about 1/3 for rock, paper, or scissors throughout the game. 
However, is that really the best? See the following article: In this article, a large 
amount of people repeatedly play rock, paper, and scissors against each other and the 
results are: “Upon review of the results, Wang did find numbers that backed up the 
Nash Equilibrium theory coming into play. He also found the above-mentioned 
pattern: winners were the players who stayed loyal to their strategy and losers were 
the players who switched. In game theory, this is called “conditional response.” In fact, 
the conditional strategy proved to be 10 percent more reliable for winning than did 
the Nash Equilibrium.” From this, you should definitely be more cautious in using the 
Nash Equilibrium. Of course, we did find the Nash Equilibrium for Rock, Paper, and 
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Scissors but we cannot say that will be the best strategy. In fact, often times it’s not (as 
we have found out in class). Thus, as shown in class and here, we can find the Nash 
Equilibrium in cases where there are more than two choices but we also need to be 
careful when applying it – even if it’s a game as simple as Rock, Paper, and Scissors. 
Side Notes: (1) I recommend readers to look up “conditional response” (2) For the 
game Prisoner’s Dilemma, a tournament was held where players repeatedly play 
Prisoner’s Dilemma and one strategy that did well was called “tit for tat.” See: 
dilemma Comments Download PDF Abstract: Rock-Paper-Scissors (RPS), a game of 
cyclic dominance, is not merely a popular children's game but also a basic model 
system for studying decision-making in non-cooperative strategic interactions. Aimed 
at students of physics with no background in game theory, this paper introduces the 
concepts of Nash equilibrium and evolutionarily stable strategy, and reviews some 
recent theoretical and empirical efforts on the non-equilibrium properties of the 
iterated RPS, including collective cycling, conditional response patterns, and 
microscopic mechanisms that facilitate cooperation. We also introduce several 
dynamical processes to illustrate the applications of RPS as a simplified model of 
species competition in ecological systems and price cycling in economic markets. 
From: Hai-Jun Zhou [view email] [v1] Thu, 14 Mar 2019 13:40:11 UTC (220 KB) Want 
more? Advanced embedding details, examples, and help! . ."All will be well if you use 
your mind for your decisions, and mind only your decisions." Since 2007, I have 
devoted my life to sharing the joy of game theory and mathematics. Mind Your 
Decisions now has over 1,000 free articles with no ads thanks to community support! 
Help out and get early access to posts with a pledge on Patron. One of the most 
common questions I get is, “Can you recommend an introductory book on game 
theory-a book without a lot of math?”When I first got this question, I was hard pressed 
to find an answer. Game theory is a mathematical science, and many presentations 
can be intimidating. For example, many journals and textbooks are so complicated 
that it takes a mastery of Bayesian probability, set theory, and real analysis just to 
understand the problems! This is a tragedy, for a subject as interesting as game theory 
should be made accessible. So over the last few years I have kept a special eye out for 
books aimed at general audiences. And I am glad to say there are a few good books on 
game theory. I have listed the books I have especially enjoyed in a separate blog page 
about recommended books. 
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And to do them justice, I plan to write full reviews on each of my favorites so 

you get a better idea of them. Today I will discuss Rock, Paper, Scissors: Game Theory 
in Everyday Life by Len Fisher. What the book is about there are two quotes in the 
“praise” section that nicely summarize the book:“Why be nice? In answering this 
simple question, Len Fisher takes us on a wry, fascinating tour of one of the most 
momentous sciences of our time. You couldn’t ask for a better guide to all the games 
we play.” –William Poundstone, author of Gaming the Vote and Fortune’s Formula 
“Rock, Paper, Scissors is a refreshingly informal as well as insightful account of key 
ideas in game theory. Len Fisher gives many examples, several from his own life, of 
games that post harrowing choices for their players. He shows how game theory not 
only illuminates the consequences of these choices but also may help the players 
extricate themselves from situations likely to cause anger or grief.” –Steven J. Brams, 
New York University, author of Mathematics and Democracy My one sentence 
summary is: Rock, Paper, Scissors is a popular science book that connects game theory 
to everyday situations and suggests several strategies for achieving cooperation.(As 
you can tell, this book is a different style from other books I like such a Thinking 
Strategically or The Art of Strategy. This book is a lighter read and connects more to 
anecdotes and science.)Book highlights will warn you that the book starts off a little bit 
slowly. The first chapter “trapped in a matrix” mainly describes the Prisoner’s dilemma 
and gives the negative connotation that the Nash equilibrium is a logical trap. The 
matrix graphics are not that illuminating either. Luckily, these setbacks didn’t stop me 
from reading the rest of the book which is full of interesting examples and 
explanations. The second chapter “I cut and you choose” is where the book picks up. 
This chapter offers a nice introduction to the concepts of mini-max and fair division. 
Fisher illuminates fair division with anecdotes like how he got in trouble as a kid 
shooting fireworks, and as a consequence had to yield fireworks with his brother. The 
answer he intuitively arrived to as a kid was what he know realizes was an application 
of the mini-max principle. I was also impressed that Fisher discusses the principle of 
equal division of the contested sum, which I have discussed twice before (regarding 
religion and homeowner fees).Chapter three is about seven of the most interesting 
game theory problems, which Fisher aptly dubs “the seven deadly dilemmas.” Here 
Fisher offers a great summary of such problems as the free rider issue and the game of 
chicken. Chapter four is a humorous one, and is about the game “rock, paper, 
scissors.” It was new to me that rock, paper, scissors is in fact played in most of the 
world (though under various other names). I was also amused at how rock, paper, 
scissors can be used in conflict resolution. The reason is that the game has no pure 
strategy that dominates the others. Hence situations and games which seem to be at a 
standstill (say too many free-riders in overfishing) can be solved by adding strategies 
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and converting them to rock-paper-scissors situations. Chapters five through eight are 
all about cooperation: how we can achieve trust, bargain effectively, and change the 
game to avoid the “trap” of the Prisoner’s dilemma and other undesirable outcomes. I 
won’t go into detail, as the main fun points are similar in nature to the other chapters: 
the narratives and interesting examples from science. Read the end notes! One of the 
best parts of this book is the “Notes” section at the end. This is a substantial part of 
the book and it is full of narratives, jokes, and random trivia.  

The end notes are over 50 pages long-and this is for a book that is about 250 
pages in total! I am still following up on many of the references and this alone has 
been worth the read. Final thoughts hope this review gives you a better idea of the 
book. It is a great introductory read and a good addition for real-life examples of game 
theory. Check it out:*I also owe a special thanks to the book publisher for providing a 
review copy If you purchase through these links, I may be compensated for purchases 
made on Amazon. As an Amazon Associate I earn from qualifying purchases. The 
puzzles topics include the mathematical subjects including geometry, probability, logic, 
and game theory. Math Puzzles Volume 1 features classic brain teasers and riddles 
with complete solutions for problems in counting, geometry, probability, and game 
theory. Volume 1 is rated 4.4/5 stars on 112 reviews. Math Puzzles Volume 2 is a 
sequel book with more great problems. (rated 4.2/5 stars on 33 reviews)Math Puzzles 
Volume 3 is the third in the series. (rated 4.2/5 stars on 29 reviews)KINDLE UNLIMITED 
Teachers and students around the world often email me about the books. Since 
education can have such a huge impact, I try to make the eBooks’ available as widely 
as possible at as low a price as possible. Currently you can read most of my eBooks’ 
through Amazon's "Kindle Unlimited" program. Included in the subscription you will 
get access to millions of eBooks’. You don't need a Kindle device: you can install the 
Kindle app on any Smartphone/tablet/computer/etc. I have compiled links to 
programs in some countries below. Please check your local Amazon website for 
availability and program terms. US, list of my books (US) UK, list of my books (UK) 
Canada, book results (CA) Germany, list of my books (DE) France, list of my books (FR) 
India, list of my books (IN) Australia, book results (AU) Italy, list of my books (IT) Spain, 
list of my books (ES) Japan, list of my books (JP) Brazil, book results (BR) Mexico, book 
results (MX) MERCHANDISE Grab a mug, t-shirt, and more at the official site for 
merchandise: Mind Your Decisions at Tee spring. 
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       The biggest issue with game theory is that, like most other economic models, it 
relies on the assumption that people are rational actors that are self-interested and 
utility-maximizing. Of course, we are social beings who do cooperate often at our own 
expense. Game theory cannot account for the fact that in some situations we may fall 
into a Nash equilibrium, and other times not, depending on the social context and 
who the players are. 
      In addition, game theory often struggles to factor in human elements such as 
loyalty, honesty, or empathy. Though statistical and mathematical computations can 
dictate what a best course of action should be, humans may not take this course due 
to incalculable and complex scenarios of self-sacrifice or manipulation. Game theory 
may analyze a set of behaviors but it can not truly forecast the human element. 

i) Game theory is exciting because although the principle are simple, the application 
are for reaching. 

ii) Game theory is the study of cooperative and non cooperative approaches to games 
and social situations in which participants must choose between individual benefits 
and collective benefits. 

iii) Game theory can be used to design credible commitments threats or promises and 
statements offered by others. 

iv) Game theory is a powerful theoretical tool for understanding cooperation and the 
conditions under which it can occur. 

v) Game theory, however, makes an assumption, in the context of cooperation, that 
can limit its application: Players are disembodied. 

vi) By using agent-based models, we can investigate embodied agents and discover 
that in many cases, stable game-theoretic solutions depend on embodiment and 
context. 
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The Cantor Set as a Fractal and its Artistic
Applications

Abstract

The Cantor middle-thirds set is an interesting set that possesses various, sometimes
surprising math- ematical properties. It can be presented through ternary representation and
obtained through an iterative process. This paper will discuss selected topological
properties of the Cantor set, as well as its connection to fractal geometry. It will then discuss
the existence of the Cantor set in a variety of artistic contexts.

Introduction

Georg Cantor (1845-1918) was a German mathematician and the creator of transfinite set
theory (Dauben 1). Cantor's work was often regarded as controversial, partially because of
the use of infinity in his mathematics (Dauben 1). He was also the first to publish the
traditional middle-thirds set, which we refer to as the Cantor set. Though the Cantor set was
an abstract concept at the time of its publication in 1883, Cantor explored many of its deep
mathematical qualities. The Cantor set is a fractal and can be achieved through use of
dynamical systems. The problem of the dynamics of iteration and fractals was briefly
explored in the early 19th century, but it was not until the use of computers that it was
developed in more depth (Mandelbrot 23). Here, we will discuss some of the topological
properties of the Cantor set. We will consider the Cantor set as both a one-dimensional and
two-dimensional dynamical system. Lastly, we will discuss the Cantor set as a fractal.

Benoit Mandelbrot developed fractal geometry in the 1970's. He referred to his math as a
new "geometric language" (Mandelbrot 21). People were slow to accept the new
mathematical concept of fractals, but eventually Mandelbrot published a paper about his
findings (Mandelbrot 22). Mandelbrot considered fractals to be artistic objects. Here, we will
discuss the connection between the Cantor set fractal and art. We can find resemblance to
fractals, particularly the Cantor set, in many artistic contexts. We will focus on its presence
in architecture and Chinese art. These connections to art make a fascinating topic in
mathematics applicable in a non-scientific context.

The Cantor Middle-Thirds Set

The traditional Cantor middle-thirds set is constructed through an iterative process.
Beginning with

the closed set [0, 1], the open middle third (1/3, 2/3) is removed. Two closed sets remain.
The middlethird is then removed from each of these sets, namely the intervals (1/9, 2/9)



and (7/9, 8/9) repeated infinitely many times, and the set that remains is the Cantor middle-
thirds set. More formally,consider the sets I0,I1,I2…,where

I0 = I = [0,1]

I1 = I\(1/3, 2/3)

I2 = I1\ (1/9, 2/9) U (7/9,8/9)…

We define the Cantor set to be C = Ik, or the intersection of I0, I1,I2…we can illustrate C by
depicting each iteration of removing middle-thirds on a separate line (Figure 1).

Figure 1: Typical representation of the Cantor Set, Tex Stack Exchange.

After the first iteration, the Cantor set consists of two disjoint intervals of length 1/3. After
the second iteration, the Cantor set consists of 4 disjoint intervals of length 1/9. At the kth
iteration, the Cantor set consists of 2k intervals of length 1/3k .

Proof. Proceeding by induction, we consider I0 = [0, 1]:

At this iteration, C has 20 = 1 interval. Now, assume that the set Ik has 2k disjoint intervals of
length

1/3k. If we remove the middle third from an interval, each subinterval will be one-third the
length of

the original interval:

Also, the 2k intervals are all split into two intervals :

By induction, Ik consists of 2k disjoint intervals of length 1/3k.We have described the classic
middle-thirds Cantor set. However, note that any set that is constructed by an iterative
process of removal of some constant portion of the set can be considered a Cantor set.



Topological Properties

The Cantor middle-thirds set can be expressed through ternary representations. Recall that a
geometric

Series converges absolutely to if │a│<1 consider the series .1
1-a

Suppose that each si is either 0; 1 or 2. Then the series is dominated by the convergent
geometric

Series . Thus, by the Comparison Test, converges and 0 ≤ ≤1.

We call 0:s1s2s3… the ternary expansion of x if x = , where each si is either
0; 1 or 2.
We claim that every x 2 [0; 1] has a ternary expansion. Let s1 be the largest among 0; 1; 2 for which

s. Then, pick the largest s2 for which Proceed inductively to get the largest sn for

which . Then note that and so, we see that the infinite series will
converge to x.
We claim that each point x of the Cantor set can be represented as a ternary expansion
0.s1s2s3... where each si is 0 or 2. If x has a ternary expansion for which some si = 1, then x
lies in a middle third interval that has been removed. This is because x would be past the left
third interval, but it would not yet reach the right third interval. For example, if s1 = 1, x ≠1/3
will be greater than 1/3=.1, but it will not yet reach 2/3=.2, placing it in a middle third. This
idea can be applied to any si. Thus, no Cantor set element ternary expansion contains a 1,
excluding the endpoints, which may have a 1 as the right-most digit of their ternary
expansion. In this case, x has an alternative expansion that contains no 1’s. For example, the
ternary representation for 1/3 is .1 and is equivalent to the representation .0222....So, we can
consider the Cantor set to be the set of real numbers in the unit interval [0, 1] with ternary
0representations containing only 0’s and 2’s.

Similarly, we can represent any x in [0, 1] by a binary expansion consisting of 0’s and 1’s.
We will

use this expansion in the next section.

When we consider the construction of the Cantor set, it seems like we “throw out” most
points of the unit interval. Intuitively, we would think that C should be a small set. The fact
that the Cantor set is actually uncountable is one of the surprising topological properties of
the set. We will prove this here:

Proof. If x is in the Cantor set, it has a unique ternary expansion using only 0’s and 2’s. By
changing



every 2 in the expansion of x to a 1, the ternary expansions of the Cantor set can be mapped
to binary expansions, which have a one-to-one correspondence with the unit interval. This
can also be done in the opposite direction to map binary expansions to ternary expansions.
The only exceptions to this correspondence are the binary expansions ending in infinitely
many 0’s or 1’s and the ternary expansions ending in infinitely many 0’s or 2’s. However,
these exceptions are countable because there are finitely many ways to begin a binary
representation before ending in an infinite string of 0’s or 1’s, and there are finitely many
ways to begin a ternary representation before ending in an infinite string of 0’s or 2’s. Thus,
there is a one-to-one correspondence between the binary and ternary exceptions. Since each
real number in [0, 1] can be represented as a binary expansion, the Cantor set has a one-to-
one correspondence with the unit interval. Now, [0, 1] is uncountable, and so the Cantor set
is uncountable.

Here, we will discuss why the Cantor set is closed, perfect, and compact. By construction,
each Ik is

closed because it is the complement of an open set. Thus, Ik is closed because the intersection of
closed sets is also closed. Therefore, the Cantor set is a closed set. We will now see that the Cantor
set
is perfect.

point x in set S is an isolated point if €-ball B(x,€) surrounding x does not contain
another point in S.

Set S is perfect if it contains no isolated points.
We claim that the Cantor set is perfect.

Proof. Consider x € C. For any €, we have the open ball B(x,€). We can choose k so that .Let Ik

be the union of 2k disjoint intervals of length 1/3k. Then, x € Ik. Let x be in subinterval s € Ik, and then s _
B(x,€). In the k + 1 iteration, s is split into subintervals a and b. Let x be in a. By self-similarity, we know
that there must be points of C in b. Thus, there are points of C in B(x€) not equal to x, and x is not an
isolated point. Therefore, no point in C is an isolated point, and C is perfect.

Now, recall that the unit interval [0; 1] is closed and bounded. Thus, it is compact by the Heine-Borel
Theorem (Ross 90). We see that the Cantor set is compact because every closed subset of a
compact
space is compact (Willard 119). We have now shown that the Cantor set is closed, perfect, and
compact.

We also can prove that the Cantor set is totally disconnected.

A set is totally disconnected if it contains no subintervals.
This is another non-intuitive property of the Cantor set. We have already proved that C is perfect, or
has no isolated points. We would then expect the Cantor set to contain subintervals. Here, we will
prove
this to be false.

Proof. Consider a; b ∈ C. Recall that Ik consists of finitely many disjoint intervals of length 1/3k. We

can find k where . So, if the distance between a and b is more than 1/3k, a and b must
belong
to different subintervals of Ik. By the construction of Ik, there must be an interval in (a,b) that is not



in Ik. Thus, there exists z =2 Ik with a < z < b. Therefore, Ik does not contain (a; b). Since
C does not contain any interval (a, b). Thus, C is totally disconnected.
Each of the previously discussed topological properties relate to an important theorem (Willard 217):
the Cantor set is the only totally disconnected, perfect, compact metric space (up to
homeomorphism).
This is an interesting theorem that requires more complicated topology than we have discussed, so
we
will not prove it here.

.
A homeomorphism is a continuous bijection between topological

spaces that has a continuous inverse [3]. Homeomorphism is an important concept
in topology, since it expresses a notion of topological equivalence. Thus, two sets
which are homeomorphic share many topological properties.

All Cantor sets are homeomorphic to each other.
Proof. Given two Cantor sets C and C’ on the unit interval, suppose they are
constructed by the intersection of C0,C1,C2… and C’0,C’1,C’2… let f0 be the linear
map bijection from C0 to C’0, both of which are entire intervals, sending endpoint
to endpoint. f0(x) is continuous within its domain. Similarly, as shown in figure 3,
let f1 be the combination of linear map from the left interval of C1 to left interval
C’1, and likewise for the right intervals..., and let fk analogue for the kth sets. All
these maps are continuous, because they are continuous on disjoint closed intervals.
Figure 3.

Now, define gk as the restriction of fk that maps only C to Ck. Since the domain
C is a subset of all Ck for k ∈ we derive that gk is continuous for all k > N. We
want to show that these gk converge uniformly to some map g. The range of g will
have to be the intersection of all C’k, so C’.
Denote Mk as the one among 2k intervals of C’k with the maximum length.
Since the Cantor sets are always nowhere dense, we deduce that limk ∞Mk = 0.
Specifically, if the value of limk ∞Mk = 0 is positive, then a subset of the Cantor
set contains at least one interval, contradicting that its closure has empty interior.
Now denote Nk as the supremum of │gk - gm│on the entire unit interval for any
m > k. Therefore, given ∈> 0, there always exists K such that for all k > K,
│gk -gm│ ≤ Nk ≤ Mk < ∈ for all x 2 C and m > k. The sequence is Cauchy in the
uniform norm, so it uniformly converges to the desired function g.
We have successfully shown that gn converge uniformly to g. g is, therefore,
a continuous map from C to C’. By the same token, we are able to construct a
continuous map from C’ to C by simply reversing the positions of C and C’ and
keeping all other aspects of our argument the same.
As a result, in order for there to be a continuous bijection between C and C’,



we only need to prove that the map from C to C’ is bijective. In fact, each element
in C and C’ can be considered as an infinite sequence of L and R, where L stands
for choosing the left interval and R stands for choosing the right interval in a given
iteration. A bijective map between a point in C and one in C’ can be established if
they have identical L/R sequences, but it is easy to see that gk gives these identical
sequences for the first k L/R choices, so g itself gives the desired mapping for all of
the infinitely many L/R choices.
Therefore, we have proven that Cantor sets C and C’ are homeomorphic to each
other. Since C and C’ can be any arbitrary Cantor sets, we deduce that all the
Cantor sets are homeomorphic to each other.

Cantor Set as a Dynamical System

We have discussed the traditional construction of the Cantor set and some of its topological
properties.
We can also reach the Cantor set through the use of dynamical systems. We will explore two di_erent
ways this can be achieved.

The Cantor set can be produced by the iteration of a function system.

Consider the two linear functions (Devaney, 192) from 2 2 :

We claim that if x is an element of the Cantor set, then this iterated function system will send the
point
(x, y) to another point of the form (c, y1) where c is in the Cantor set. In other words, this system fixes
the Cantor set. Recall that the Cantor set consists of all points in the interval [0,1] with ternary
expansions containing only 0's and 2's. We see that A0 shrinks the x-coordinate by 1/3, and its
corresponding
ternary representation by .1. For example, consider x = :0022022 ∈ C. A0 would shrink x by .1 to
.00022022. This ternary representation consists of only 0's and 2's, so it is still contained in the
Cantor
set. A1 shrinks the x-coordinate by 1/3 and shifts it by 2/3, or by its ternary representation of :2. For
example, A1 would shift x = .0022022 to .20022022. This ternary representation also consists of only
0's and 2's, so it is still contained in the Cantor set. So, we see that the system of equations A0, A1

takes points of the Cantor set back into the Cantor set. These functions, no matter the order they are
performed, leave the Cantor set fixed.

The Cantor set is called the attractor of this iterated function system. This means that any point in the
plane with any y-coordinate will eventually be “pulled into" the Cantor set when this function system is
applied. That is, after enough iterations, every point in the plane will converge to a point (c,0) where c
is in the Cantor set. To see this, we consider any number of iterations of A0 and A1 in a random order.
We can represent this random sequence of choice of A0 or A1 by a sequence (s1s2s3…sn) where each si

is either 0 or 2 representing the application of A0 and A1 respectively. Now let x ∈ , and let xn be the

result of the applied sequence of A0 and A1. We see that:



When we take the limit of xn as n ∞, we see that the _rst term x/3k approaches 0. The remainder
of

this expression is of the form with each si equal to 0 or 2, which we know means it is an
element
of the Cantor set. The y-coordinate will be sent to 0. Thus, we see that any point in the plane will
converge to a point (c; 0), where c is in the Cantor set, after enough iterations of A0 and A1 in a random
order.

We can also produce the Cantor set by a different dynamical system. To illustrate this, we consider
the
Tent Function:

We claim that by iterating this function, the points that are not sent to infinity are exactly the Cantor
set.

If x < 0, then T(x) < 0. At the next iteration of the Tent Function, T2(x) = 9x < T(x). At the third
iteration, T3(x) = 27x < T2(x). We see that as n ∞, T(n) -∞ for x < 0.

Figure 2: Tent Function, map of point x < 0

Graphically, we trace a point from the tent map to the line y = x. We begin with a graph of the tent
function and the function y = x. At an x value outside of our interval [0, 1], we map from y = x to the
tent function. At that y value, we map back to y = x. Then, from that x value, we map back to the
tent function. By repeating this process, we see that the point we have been mapping goes to
negative
infinity. Figure 2 depicts this process for x < 0.



Figure 3: Tent Function, map of point x > 1

If we choose x > 1, after the first iteration T(x) < 0. Recall that as n ∞, T(n)(x) -∞ for x < 0.
Therefore, for x > 1, x is sent to -∞, as depicted in Figure 3. Thus, we find that for x ∉ [0,1], x is sent
to negative infinity by iterating the Tent Function.

Figure 4: Tent Function, map of point < x <1
3
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By this same process, we also see that if x ∈ ( , ), then x is sent to infinity (Figure 4). For example,1
3

2
3

T(1/2)=3/2. We saw above that this is eventually sent to -∞ because x > 1.

In fact, any point in a middle third will be sent to -∞. For example, if x ∈ ( , ) then it is sent to1
9

2
9

( , ) in one iteration of the Tent Function, which we discussed above. This is supported algebraically:1
3

2
3

if 1/9 < 2/9 then 1/3 < T(x) = 3x <2/3. This is true for any x in a middle third interval.

Any point that is in the Cantor set, with the exception of the endpoints, will be sent back to itself after
enough iterations of the Tent Function. We will not provide a formal argument for this, but we will
explore an example. Consider 3/13, which is not an endpoint. Now, we will see that 3/13 is sent back
to itself after three iterations of the Tent Function:

T( ) = 3( ) =3
13

3
13

9
13



T2 ( ) = 3-3( ) =3
13

9
13

12
13

T3 ( ) = 3 - 3( ) =3
13

12
13

3
13

The ternary representation of 3/13 is :02002…., which confirms that it is in the Cantor set.

We also see that at the x values 0 and 3/4, there is no line to be mapped graphically. These points are
where the tent function and x = y intersect, and are called fixed points. This is supported algebraically:

3(0) = 0

3 -3( ) =3
4

3
4

If we consider the endpoints of the Cantor set intervals, we find that they eventually are attracted to
the fixed point 0. These are called eventual fixed points. For example, endpoint 1=3 is attracted to the
fixed point 0 after the second iteration of the Tent Function:

T( ) = 3 = 11
3 (1

3)
We will now prove that each endpoint is an eventual fixed point and is sent to 0:
Proof. All endpoints of the Cantor set are of the form ∑n

3k because they must be rational. Recall that
the endpoints can contain a 1 in the right-most digit place, but these can be rewritten in terms of 2's.
That is, sn = 1 is possible if x is an endpoint. If s1 = 0 then T(x) = 3x. This shifts the left-most ternary
digit left by 1. If s1 = 2, then T(x) = 3-3x = 3-2.s2s3…sn = 3-(2+.s2s3…sn) = 1-.s2s3…sn. We
see that T(1 - .s2s3…sn) = T(.s2s3…sn) because T(x) is symmetrical about the line x = 1/2. We can
repeat this process until we reach sn. If sn = 0 or 2, then we repeat one last time, and we reach 0. If
sn = 1, we apply T(x) again and reach 1, which is sent to 0 by another iteration of T(x). Thus, We see
that the endpoints are eventually sent to the fixed point 0.
Here, we see an example of this process. Consider the endpoint 7/9=.21.

3(.21) = 2:1
T(.21) = 3 - 2:1 = 3 - (2 + .1) = 1 -.1
T(1 -.1) = T(.1) = 1
T(1) = 3 -3(1) = 0
We see that the endpoints are eventually sent to the fixed point 0. The endpoints are not sent to
infinity, which means they are part of the Cantor set. This correlates with our analysis of their ternary
representations in Section 2.1.
Iterating the Tent Function sends all points of C back to themselves or to a fixed point. Thus, we see
that iterating the Tent Function fixes exactly the Cantor set.

The classic Cantor middle-thirds set is a mathematical object called a fractal.
Fractal A fractal is a subset of Rn that exhibits self-similarity on all scales and has fractal dimension.
A fractal does not necessarily have topological dimension.
Informally, self-similarity means that we can apply a rescaling function to the set and the image of the
set will look the same. Benoit Mandelbrot provided an informal definition of a fractal: \Fractals are
geometric shapes that are equally complex in their details as in their overall form. That is, if a piece
of a fractal is suitably magnfied to become of the same size as the whole, it should look like the
whole,
either exactly, or perhaps only after a slight limited deformation" (Mandelbrot 22). We can see that the
Cantor set is self-similar by examining C at a different scale. Recall that I1 consists of two intervals of
length 1=3. If we magnify one of these subintervals by 3 and continue the process of removing the
middle
third, we see that we have an exact copy of the full-scale Cantor set.
3.4 Fractal Dimension
We will now discuss the difference between fractal and topological dimension. The type of dimension
that



we are most familiar with is topological dimension. A point is of dimension 0, a line is one-
dimensional,
a square is two-dimensional, and a cube is three-dimensional. Logically, we understand these
dimensions
as the number of “linearly independent" directions we can move along an object (Devaney 185). For
example, we can move along the length and width of a square, so we understand it to be two-
dimensional.
We define topological dimension here:

An open set S has topological dimension k if each point in S has an arbitrarily small neighborhood
homeomorphic to k (Devaney 186).

For example, an open square has topological dimension 2 because the points in a square have
arbitrarily
small neighborhoods that are two-dimensional.
Notice this applies when k = 0. In that case, every point in the set has a neighborhood that is homeo-
morphic to a zero-dimensional object, such as a point. For example, a discrete set has dimension 0.

It remains to show that the Cantor set has fractal dimension. Finding the dimension of the Cantor set
is more complicated then finding the dimension of simpler objects. We proved that C contains no
subintervals. This implies that the Cantor set contains no point with a neighborhood that is
homeomorphic
to 1. Thus, the Cantor set is not one-dimensional. However, C is also perfect and contains no isolated
points, so it does not have dimension 0. Therefore, the Cantor set has dimension in between 0 and 1.
We can think of the Cantor set as somewhere in the middle of unconnected isolated points and
pieces of
straight lines (Peak, Frame 92). At every scale, C appears to be linear stretches, though we know that
each of these stretches is broken up at the next iteration (Peak, Frame 92). To consider the dimension
of the Cantor set, we must define a new type of dimension: fractal dimension. First, we must note that
only sets that are affinely self-similar have a well-defined fractal dimension (Devaney 186).

A set S is called affine self-similar if S can be subdivided into k congruent subsets,
each of which may be magnified by a constant factor M to yield a whole set S (Devaney 187).

As we discussed in Section 3.3, the Cantor set is affine self-similar.

Suppose the affine self-similar set S may be subdivided into k congruent pieces,
each of which may be magnified by a factor of M to yield the whole set S. Then, the fractal dimension
D of S is (Devaney 188):

To understand fractal dimension, first we consider a square. We see that if we break the square into
pieces that are 1/n the size of the original square, we need n2 pieces to reassemble the square. The
fractal dimension of a square is (Devaney 189):

We see that the topological and fractal dimensions of the square are equal.

The Cantor set has a well-defined fractal dimension. The Cantor set has 2n intervals and a



magnification
factor of 3n at any stage, so the fractal dimension of C is (Devaney 190):

As we predicted, the dimension of the Cantor set is between 0 and 1. The Cantor set does not have
topological dimension, but it does have a well-defined fractal dimension. This shows that the Cantor
set
is indeed a fractal.

Applications in measure theory

. Now that we have discussed the topological
properties of Cantor sets, it is fundamental question also to ask how "big" they are.
This idea is trivial for finitely many disjoint intervals just add up the lengths -
yet in the infinite case is somewhat more complicated. The concept of the Lebesgue
measure, one particularly useful type of measure in mathematics, is basically the
total length of the shortest possible intervals that encapsulate a given subset. A
full discussion of this measure is beyond the scope of this paper, but it success to
note that it gives a more rigorous notion of size to sets.
The Lebesgue measure on R satisfy the following properties:

1. m(A) ≥ 0
2. m(Ø) = 0
3. m([a,b]) = b – a
4. It is countably additive. Namely, for all countable collections {Ek}∞ of pairwise

disjoint sets in ∑,

As an immediate consequence of properties 1 and 4, if A Type equation here. B then m(A) ≤
m(B).
It is easy to check that this consequence along with property 3 implies that points
have measure 0, and in fact, countable sets also have measure 0. We can also
calculate the measure of the standard Cantor set.

. Since we remove the middle 1/3 of each remaining
interval in each iteration, the Lebesgue measure of Cn is (2=3)n (2n intervals each
of length 3 n). Each Cn contains C, so the measure of C is no larger than that of
any Cn. Taking the limit of it as n goes to infinity gives us zero, which is a fairly
counterintuitive result: countable sets all have measure zero, but the Cantor set
gives an example of a set that is uncountable and also measure zero.
Now, generalizing the standard Cantor set can lead to even more counter-intuitive
results. We begin with a theorem.

Theorem . There exists a nowhere dense set with positive measure.
This theorem can be illustrated by the following category of Cantor sets.
3.1.3. Fat Cantor sets. Instead of removing a constant portion of the original set
in each iteration, fat Cantor sets are created by removing progressively smaller
portions of the original set in each step such that the ratio of what is being removed
to the interval it is being removed from goes to 0 as n goes to infinity.
Ex: remove the middle (1=k)n of Cn-1, where k > 3.



Figure 4. Example of a fat Cantor set
Unlike the standard ternary cantor sets, these fat Cantor sets have a positive
measure, which is odd because they are nowhere dense and don't contain even one
interval. Take the example mentioned earlier that removes the middle intervals of
lengths (1=k)n from Cn-1, k > 3.
The Lebesgue measure of the removed intervals

Therefore, the Lebesgue measure of the corresponding fat Cantor set is (k-3)=(k-
2)
An example of the fat Cantor set is the Smith{Volterra{Cantor set (SVC): k = 4
in this case, and its Lebesgue measure is 1=2.

In mathematics, the notion of fractional dimension, an intrinsic
property of a set, is an extension of the idea that a line is one-dimensional, a plane
is two-dimensional, and space is three-dimensional. First, let us explore one way to
approach how the dimensions of, say, a line segment and a rectangle are defined.
A line segment has dimension 1, because as we stretch it to twice its original length, its
'substance'{length{doubles as well. In the case of a rectangle, if
we stretch all sides to twice their original scales, its substance{namely the area{
quadruples. Taking the logarithm of 4 over 2 gives us 2.
Put in an equation, we can write that

where S1 is the new substance, S2 is the old substance, S stands for the stretch,
and D is the dimension. The dimension is the exponent by which the size changes
when scaled by a certain amount.
As in the two examples above, you might expect that only integer dimensions
are taken. As will be shown below, however, the dimension of mathematical objects
are not necessarily integers and can take on many arbitrary values.



Figure 5. dimensions of line segments and squares

Fractals in Art

Benoit Mandelbrot considered his fractal geometry to be a new form of art (Mandelbrot 21). He
claims
fractal geometry as an \art for the sake of science," and refers to the fractal as a useful beauty
(Mandelbrot
22). Art historians and mathematicians, such as Mandelbrot, have been pondering the connections
between the fields of art and mathematics for decades. Here, we will connect the Cantor set to art
and
architecture.

Figure 6: Connected Cantor Set, (Tex Stack Exchange).

Mandelbrot finds the coexistence of order and chaos in the issue of dynamics of iteration beautiful in
itself (Mandelbrot 23). He also finds images of fractals artistic. In many cases, the traditional image
of a
common fractal is altered to make it more aesthetically pleasing. For example, the representation of
the
Cantor set above connects each iteration to the previous iteration. This Connected Cantor set (Figure
6) is more artistic than the usual representation of the set.



This image still represents the Cantor Set. Instead the of the traditional representation that consists
of
a set of separated lines, this representation exhibits one continuous object. It is a more organic image,
which makes it more aesthetically pleasing. We can find examples in Chinese art and Architecture
that
resemble both this Connected Cantor set, as well as the traditional representation of the Cantor set.

Chinese Art
Fractals appear in many pieces of Chinese art. We can even find resemblance to the Cantor set,
particularly the Connected Cantor set. Mandelbrot claims that fractals can serve as representations
for natural
objects (Mandelbrot 22), and we will apply this idea to Chinese art.

We first turn to the work of Guo Xi (1020-1090), a Chinese artist of the Northern Song dynasty
(Bentley).
Guo Xi painted in the black and white monumental landscape rugged style (Murashige 343). The
rugged
monumental landscape style originated in the previous Five Dynasties period and was initiated by
painter
Li Cheng (Bentley). It featured \crab-claw," defoliated tree branches. During the Northern Song period,
Guo Xi adapted this monumental style, accentuating the crab-claw branches (Bentley). Though Guo's
work came long before the Cantor set was discovered, we can find a resemblance to the set in his art.

Figure 7: Early Spring, Guo Xi, ink on paper; 1072.

We consider Early Spring, one of Guo Xi's most famous works (Figure 7). This piece, painted in 1072,
features the twisting crab-claw branches that the artist was known for (Murashige 343). The branches
begin with a thick branch size, and a smaller arm branches o_ from each larger branch. This process
is repeated on each smaller branch until the brush stroke becomes too thin to possibly be drawn. This
process is reminiscent of the iterative process we use to construct the Cantor set. These branches
also
resemble our representation of the Connected Cantor set in Figure 6. This Cantor set representation
shows each iteration connected to the next iteration in a branch-like way. The trees in Guo Xi's Early
Spring resemble a version of our connected Cantor set in which the branches have been turned and
twisted in different directions.

Guo Xi worked in a time where Song neo-Confucianism was the most prominent philosophy accepted
by
the people of China. This philosophy influenced both the subject matter and style of the work at the
time (Bentley). A major concept explored in this type of neo-Confucianism is li, which means \inner
structure." There are three different levels of li : the human level, the natural level, and the heavenly
level (Li, Yan 205). The goal of each person is to align her own moral inner structure, which has been
corrupted by emotions, with those of nature and heaven (Bentley). These philosophical levels are
fractal-
like. The ultimate goal would be for the li to be \self-similar" at each level. The human at the _rst



philosophical level would like to make her inner structure \look" like the the inner structure of the next
two levels. No matter the level, li should look the same. In other words, li should be self-similar. The
concept of li is defined in a similar way to the way we define a fractal. Thus, even the philosophy
behind
Guo Xi's Early Spring resembles a fractal structure.

Figure 8: Seven Junipers, Wen Zhengming; Ming dynasty.

We will also consider Wen Zhengming (1470-1559), a Chinese scholar and painter from the Ming
dynasty
(Bentley). His famous Seven Junipers features twisted Juniper tree branches (Figure 8). These
branches
share the same resemblance to the Connected Cantor set representation in Figure 6 as those of Guo
Xi's trees. This is an even more distorted version of our Connected Cantor set, but it still exhibits the
thinning out effect we observed in Early Spring. By examining the works of Guo Xi and Wen
Zhengming,
we find a resemblance to the Cantor set. We see that the Cantor set, and fractal structure in general,
can be applied in the context of Chinese art.

Architecture
Fractals also appear in architecture. We can find the Cantor set in the patterning of windows or other
features on buildings. For example, we look to the AT&T building, now known as the Sony Tower, in
New York City (Figure 9). The building was completed in 1984 and was designed by architect Philip
Johnson and his partner John Burgee. To find a Cantor set, we consider the pattern of the windows
on
the front face of the building.
The top level of windows is in a symmetrical pattern. From the left, there is one medium-width
window,
then three large-width windows. The central section of windows contains eight window sections with
small widths. The windows on the right side of the central section mimic the pattern of those on the
left
side. We will consider the windows themselves as part of our Cantor set and the concrete as the part
we remove. At the next level of windows, each large-width window is “split" into four windows. At this
iteration of the set, more points, represented by the concrete, have been removed. We can think of the
pattern of the windows as a Cantor set. This is an example of a Cantor set that is not the traditional
middle-thirds set.



Figure 9: Sony Tower, Philip Johnson and John Burgee, New York City, New York; 1984.

For another depiction of the Cantor set in architecture, we turn to a much older example. We can find
the Cantor set in the capitals of Egyptian columns. For example, consider this column capital from the
Temple of Dendur from 15 BC, which now resides in the Metropolitan Museum of Art in New York City
(Figure 10).

Figure 10: Column Capital from Temple of Dendur, Metropolitan Museum of Art, 15BC.

The capital features bundles of papyrus stalks and lotus leaves, which take the form of a curve. The
top
curves are split into two smaller curves by removing a center section. The two smaller curves also
shift
away from the center of the larger curve. This process is repeated three times on this particular
capital.
This capital resembles a Cantor set in that various intervals of marble are removed through an
iterative
process. The Egyptians may have even intentionally used an iterative process to create this motif.

Applications in the real world: fractal phenomena

Because of its self-similar nature, the standard Cantor set is the prototype of a fractal. In fact, a well
established mathematical branch, fractal geometry is widely applied to study patterns and



phenomena in various aspects of our lives, and in this paper, we picked three examples with the
closest relationships to the Cantor
sets.

.
Among the numerous fractal structures observed in nature{spirals, tree branches, snow

flakes{ Saturn's rings have a special relationship to the Cantor sets.
Note the different sizes in the gaps of Saturn's rings in below , which look like the intervals removed
from a Cantor set. The figure on the right consists of the product of fat Cantor set and a circle. The fat
Cantor set has positive measure,

Figure:11 Left: Saturn's rings (NASA). Right: a product of a Cantor set and a circle.
specifically provides an interesting comparison with Saturn, because if the rings' cross section were a
different Cantor set of zero area, the rings would have almost zero area to reflect light and so would
be almost invisible.

.
Compared to unambiguous self- similar patterns in art and nature, the applications of Cantor sets

and fractals to the financial world come in a more subtle way. Mathematician Benoit Mandelbrot
(1987) once compared
markets to turbulent seas in his “Ten Heresies of Finance," where he argues that :" the very heart of
finance is fractal." In discussing the applications of fractals to analyzing markets, he states that the
simplest fractals scale

Figure 12:Bitcoin Price, for example, in the past 18 hours, with an estimated Hurst Coeffcient of
around 0.4-0.5

the same way in all directions, hence are called self-similar. If the fractals scale in many different
ways at different points{the exact reality of the markets ... their mathematical properties become
intricate and powerful."
The comparisons with nature lead to idea that financial markets are similar to the behavior of various



natural phenomena in the world. The history of shifts from classical to modern views on the market
modeling were

outlined, visualizing some misconduct of classical approach to market modeling and providing
examples of
utilizing the fractional approach.

An alternative to EMH. For decades, the Efficient Market Hypothesis has been the dominant
foundation for the modeling of financial markets. It states that stocks always trade at their fair value
on exchanges, making it impossible for investors to purchase undervalued stocks or sell stocks for
inflated prices. The core
idea of the Efficient Market Hypothesis lie in the observation that stock prices exhibit random walks,
which can be modeled by something called geometric Brownian motion. Modeling with geometric
Brownian motion suggests that the percentage change of a stock price in a given future time interval
is completely independent of its previous prices. Furthermore, the distribution of the percentage
changes after a given time has passed t should be normally distributed, with variance proportional to t.
The model of geometric Brownian motion is useful, but not perfect. For instance, one can modify it by
adding a "drift" term to capture the reality that stock prices tend to increase over time. A more core
issue, though, is the idea of fat tails, which reflect the disproportionate influence of rare events on the
economy. The reality of
fat tails has laid the foundation of a new theory { the \Fractal Market Hypothesis".
One of the central arguments in the fractal marker hypothesis is that the frequency distribution of
returns looks the same at different investment horizons, which is the total length of time that an
investor expects to hold a security or a portfolio. The longer-term horizons are based more upon
fundamental information, and shorter-term investors base their views on more technical information.
As long as the market maintains this fractal structure, with no characteristic time scale, the market
remains stable because each investment horizon provides liquidity to the others.
As a result, the geometric Brownian motion, as a stochastic process to model stock movements in
EMH according to the Black{Scholes model, can be potentially replaced by the fractional Brownian
motion with a special parameter Hurst coefficient "H". For self-similar time series, H is directly related
to fractal dimension, D, where 1 < D < 2, such that D = 2 - H. Increments are independent only when H
= 1/2, for H > 1/2, increments are positively correlated and for H < 1/2 they are
negatively correlated. [14]



Figure 14. Volterra's Function

The values of the Hurst exponent vary between 0 and 1,
with higher values indicating a smoother trend, less volatility, and less roughness.

Figure 15. Patterns corresponding to different H coefficients

An intriguing point where Cantor sets come into play is when we observe the level set of a one
dimensional fractional Brownian motion mentioned above. Assuming in case of figure 8 that the H
index of bitcoin price is around 0.5 (0.495 ± 0.102) according to [11], the chance of the stock price
going up or down is close to random.
Therefore, any typical level set (e.g. the red line in figure 7) is a closed, perfect set resulting from the
properties of Brownian motions (both fractional and geometric) [12]. Furthermore, the level sets will
almost surely not contain any intervals, meaning with the above properties that they must be Cantor
sets.

Conclusion

Georg Cantor's classical middle-thirds set exhibits intriguing mathematical properties. We showed
that
the Cantor set is uncountable, which is surprising because it seems that it should be a small set. We
also
proved the non-intuitive quality that though the Cantor set contains no subintervals, it also contains
no isolated points. We can produce the Cantor set through a two-dimensional system of two
functions.
This study revealed the Cantor set as an attractor to an iterated function system. We also considered
the Cantor set as a one-dimensional system of points that are not sent to infinity through exploration
of
the Tent Function. Discussion of the Cantor set as a fractal led us to find that C has a fractal
dimension



between 0 and 1.
Benoit Mandelbrot considered his fractal geometry an art form. We considered the Cantor set as an
artistic form, with a focus in two different areas. Our Connected Cantor set representation resembles
the
trees in works by Chinese painters Guo Xi and Wen Zhengming. We also found a resemblance to this
Connected Cantor set in the Song Tower of New York City. Lastly, we considered the column capital
of
the Egyptian Temple of Dendur and found a more classic representation of the Cantor set.
We have taken a complex mathematical set and applied it to the world of art. The Cantor set not only
proves to be a set with interesting mathematical properties, but also a beautiful mathematical object
with multiple applications in an artistic context.
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INTRODUCTION

Visual proofs are not really proofs.Its therefore Eisenberg and
Tommy Dreyfus note in their paper"on the reluctance to
visualise in mathematics",some consider such visual
arguments to be of little value,and "that there is one and only
one way to communicate mathematics, and visual proofs are
not acceptable.But to counter this viewpoint, Eisenberg and
Dreyfus go on to give us some quotes on the subject:

(Paul)Halmos, speaking of Solomon Lefschetz stated"He saw
mathematics not as logic but as pictures". Speaking of what it
takes to be a mathematician,he stated:"To be a scholar of
mathematics you must be born with…..the ability to visualise
"and must teachers try to develop this ability in their students

So if visual proofs are not proffs,what are they? Generally
visual proofs are pictures or diagrams that help the observer
see why a particular statement may be true.and also to see
how one might begin to go about proving it's true.In some
equation or two may appear in order to guide the observer in
this process.But the emphasis is clearly on providing visual
clues to the observer to stimulate mathematical thoughts.



So, here I presented some inequality and infinite series with
visual proofs which helps students to find enjoyment in
discovering or rediscovering some elegant visual
demonstration of certain mathematical idea,that teachers will
want to share many of them with their students and that all will
find stimulation and encouragement to try to create new
"visual proofs" or "visual proofs of inequality and infinite series
"



1. A.M-G.Minequality

(a+b)/2=√(ab)

GQ=√(ab)
Hencecomplete theproof.

Proof :ab=(a+b)2/4-(a-b)2/4
≤(a+b) 2/4

Here,Comparing,∆PGQand∆
RGQ Weget,GQ/b=a/GQ



Solution : We have a2 ≥a2−(b−c)2 =(a+b−c)(a+c−b).

Analogously b2 ≥(b+a−c)(b+c−a) and c2≥(c+a−b)(c+b−a).

≥(a

abc≥(a+b−c)(b+c−a)(c+a−b).

Equality holds if and only if a = b =c, i.e.

the triangle is equilateral.

+b−c)2(b+c−a)2(c+a−b)2a2b2c2



Proof:Let (a,b)and (x,y) benotproportional.
Let us consider theexpression
(a-kx)2+(b-ky)2,wherek is real.
For all real k,theexpression is greater or equal to zero.
Theequality occursonlywhena-kx=0,b-ky=0.Let ,
(a-kx)2+(b-ky)2>0
Or,(a2+b2)-2k(ax+by)+k2(x2+y2)>0
It is obvious that,
(a2+b2)(x2+y2)>(ax+by)
Hencecomplete theproof.



⇔ 2(a2+b2)≥a2+b2+2ab⇔ 2(a2+b2)≥(a+b)2⇔

Proof :(a-b)2≥0. ⇔ a2+b2≥2ab

(a2+b2)/2 ≥ (a+b)2/4.Hence (a2+b2)/2≥(a+b)2/4 .

Equality holds if and only if a −b =0,i.e. a =b.



Solution From the obvious inequ

ality (x −1)2 ≥0. we have x2 −2x+1≥0⇔ x2+1

≥2x, and since x>

0 if we divide by x we get the desired

inequality. Equality occurs if andonly if x −1=0

, i.e. x =1.



a,b,c∈R.Prove

2(a2+b2+c2)≥2(ab+bc+ca)⇔a2+b2+c2≥ab
+bc+ca.Equalityoccurs if andonly if a=b
=c.

:Since(a−b)2+(b−c)2+(c−a)2≥0.we
a2+b2+c2≥ab+bc+ca.



Infiniteseries
Let {an}beasequenceof realnumbers.
Thentheexpressiona1+a2+a3+.......
Willbecalledan infiniteseries.

GeometricSeries:
The infiniteGeometricSeries
a+ar+ar2+..... (a>0) is
(a)convergent if the common ratio r lies between
-1and+1.in this case thesumof theseries is a/(1
-r)
(b)properlydivergent if r isgreaterorequal to1.
©Oscillatesfinitely if r=-
1andOscillates infinitely if r<-1.
(improperlydivergent)
Proof :
Sn=a(rn-1)/(r-1). r isnotequal to1.
(a)
Ifn tends to infinite thenS=a/(1-r)
(d)



If r=-1,wehave
Sn=a-a+a-a+…….tonterms.
Ifn isodd,thenthesumisa,
Ifn iseven,thenthesumis0.
TheseriesOscillates infinitely.
So, theGeometricSeriescoverges
Onlywhen|r|<1.



Somevisualproofofinfiniteseries

7.(⅓)+(⅓)2+(⅓)3…..=½(proof

Proof :weknowthat ,
a+ar+ar2+….=a/(1-r)wherer is lessthan1.
Herea=⅓,r=⅓
Hencesumof theseries is ,
(⅓)/{1-(⅓)}=½

Someotherexamples,



Bythisthreeaboveexamples,
The general result 1/n+1/n2+1/n3+.......=1/
(n-1)
can be proved using this construction with a
regular(n-2)gon.



1 – r

10 r3

ar2 ar a

a

r2 r

a > 0, r ∈ (0, 1) ⇒ a+ ar + ar2 + ar3 + · · · =
a

1− r
.
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